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Abstract— Active and passive low-frequency microwave
measurements from a number of space- and airborne instruments
are used to estimate soil moisture. Each of the sensing approaches
has distinct advantages and disadvantages. There is increasing
interest in combining active and passive measurements in order
to realize the advantages and alleviate the disadvantages. In order
to combine active and passive measurements, their covariations
with respect to soil moisture need to be known. The covariation
is dependent on how the active and passive microwaves interact
with vegetation canopy and soil surface. In this paper, we intro-
duce a physics-based model for the covariation of active and
passive microwaves over soil surfaces with vegetation cover. The
analytical form for a covariation function is derived which
depends on the scattering and absorption of microwaves by soil
and vegetation with different orientations, structures, and water
contents. The main finding is that the covariation function β
is related to the roughness and vegetation losses in the two
measurements. An increase in soil roughness or in vegetation
cover leads to less negative values of β, which is pronounced
for dense and moist vegetation. Both the soil and vegetation
components introduce a polarization dependence of β that is
caused by polarization-induced differences in soil scattering and
oriented plant structures. The forward modeled covariations are
plotted together with statistically derived covariation estimates
from two months of global active and passive L-band observations
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of the Soil Moisture Active Passive mission. The physically
modeled and statistically derived estimates of covariation are
comparable in magnitude and scale.

Index Terms— Active–passive microwave sensing, radiometer,
synthetic aperture radar (SAR), soil moisture, Soil Moisture
Active Passive (SMAP), vegetation attenuation and scattering.

I. INTRODUCTION

INFORMATION on soil moisture at global scale is needed
to understand and to model global climate, weather,

and hydrological processes as well as their impacts on
society [1], [2]. Despite its small absolute amount compared
to other water storages on earth, soil moisture exerts control
on interactions within the water cycle (e.g., land–atmosphere)
and links the water, energy, and carbon cycles [3]. In order
to sense the land surface regardless of cloud cover and solar
illumination, microwave bands are preferred over optical and
thermal frequencies. Lower frequency microwave channels
partially penetrate through closed vegetation cover [4]. They
also have a deeper soil sensing depth [5].

However, the size of the antenna limits the spatial
resolution of low-frequency passive microwave measurements
from low-earth orbit. Active microwave measurements
can achieve higher resolution through synthetic aperture
radar (SAR) processing [6]. The vegetation cover and surface
soil conditions affect both active and passive microwave sig-
nals [7]. The interactions are more complex in the case of the
active signal because the sensitivity of radar backscatter to soil
and vegetation depends on several parameters. These include
soil roughness (typically characterized by root-mean-squared
height, correlation length scale, and the choice for the corre-
lation function) and vegetation structure (including geometry,
distribution, and dielectric properties). There is also a tradeoff
between resolution and soil moisture sensing sensitivity
between active and passive microwave measurements [8].
Ideally, the two can be combined to extract the relative advan-
tages of the two sensing approaches [9]. In order to combine
active and passive low-frequency microwave measurements,
the covariations of the two measurements in the presence of
variations in soil moisture need to be known. The covariation is
the fundamental building block of active–passive soil moisture
retrieval algorithms. It is strongly dependent on combinations
of microwave channels and acquisition geometries. Analysis
of the covariation for rough but bare soil surfaces is feasible
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using theoretical (numerical) models (see [5], [10]–[14]).
Incorporating the influence of the vegetation cover is not as
well understood. Recently, a number of cases have been
explored using analytical and parameterized models [15]–[24].

In this paper, we propose a physics-based, analytical
(closed-form) formulation for the covariation that is dependent
on the specification of microwave wavelength and incidence
angle combinations, on vegetation and its structure, and on
the statistics of soil roughness. The physical forward model of
covariation serves as a guide for the design of active–passive
surface soil moisture retrieval algorithms. The radar and
radiometer can be on the same airborne or space-borne
platform, but it can also be applied to measurements which
are made on different platforms. Combining active and passive
microwave measurements from different platforms are an
emerging opportunity. Currently, there are excellent active and
passive microwave sensors (e.g., TanDEM-X, Sentinel-1A/B,
RADARSAT-2, and ALOS-2 for the active, European Space
Agency’s Soil Moisture Ocean Salinity, Japan Aerospace
Exploration Agency’s Advanced Microwave Scanning
Radiometer 2, and National Aeronautics and Space Admin-
istration’s (NASA) Soil Moisture Active Passive (SMAP)
missions for the passive) making routine and global environ-
mental measurements on different platforms. The combination
of the two measurement types in a unified active–passive
algorithm is an emerging opportunity. The forward model
of active–passive microwave covariations, introduced in this
paper, is meant to enable the realization of these opportunities.

This physical covariation model provides insight into the
role of vegetation and identifies limits to sensing under dense
canopies and distinct soil roughness. It is compared to global
active and passive L-band (1.2–1.4 [GHz]) space-borne obser-
vations. The observed covariability is based on time series
of active and passive measurements from the SMAP mission.
The SMAP mission uses a radiometer in combination with
an SAR, operating with a shared L-band horn antenna and a
deployable, spinning mesh reflector [9], [26]. The radiometer
measures H- and V-polarized brightness temperatures (as well
as the third and fourth Stokes parameters) with a relative
accuracy of 1.1 [K], while the SAR acquires HH and VV
copolarized backscatter and one cross-polarized (HV or VH)
backscatter with a relative accuracy of 0.5 [dB] [9], [26].
The data are acquired at 40° fixed incidence angle (off-
nadir) by a conical scan across a 1000 [km] swath and at
a fixed local time (6 A.M.) [25]. The two instruments operate
on different scales: SAR products are provided at 3 [km]
while radiometer products are available at 36 [km] (based on
−3 [dB] or half-power definition), respectively. Unfortunately,
the SMAP radar only collected global data for 11 weeks
(April 14, 2015–July 7, 2015) before it stopped transmitting
due to an instrument anomaly. Nevertheless, the SMAP obser-
vations from this period comprise an unprecedented global-
scale data set for studying covariation between active and
passive microwaves and for preparing future combined active-
and passive-based surface soil moisture products (e.g., SMAP
L-band radiometer and Sentinel-1A/B C-band radar).

In course of the preparation for the SMAP mission, a variety
of downscaling approaches were developed. For example,

Bayesian merging [27], ensemble Kalman smoothing [28],
or change detection [29], [30] was proposed and some tested
on airborne campaign data [8], [31]–[34].

The SMAP active–passive approach to surface soil
moisture estimation at an intermediate 9 [km] scale is to
combine the sensitivity advantage of the brightness tem-
perature for soil moisture with the resolution advantage of
the SAR data [30], [31], [35]. For the operational active–
passive product, the SMAP algorithm uses the fine-scale
SAR backscattering coefficients to downscale the coarse-scale
radiometer brightness temperatures to intermediate-scale ones,
from which soil moisture is retrieved [8], [31], [36].

The current baseline algorithm of the SMAP active–passive
product uses a statistical (time-series regression) approach to
estimate the covariation between the coincident SAR backscat-
tering coefficients and the radiometer brightness temperature
measurements [8], [31], [36]. The statistically determined
slope of this linear relationship–denoted β–represents the
covariation and is determined by regressing over a time series
of active–passive SMAP acquisitions. Therefore, it is assumed
that there is a separation of time scales between surface
moisture variations and changes in vegetation and surface
roughness. Thus, over finite-time windows, only variations in
soil moisture contribute to covariations in radar and radiometer
observations. But for each time window, the strength of the
relationship is dependent on the soil roughness and vegetation
conditions. This statistical approach is sensitive to temporal
variation in soil roughness and vegetation cover (e.g., chang-
ing soil conditions and different phenological stages of
vegetation). Therefore, the regression needs to be updated
for each location and performed over a moving subseasonal
window in time. Previous studies have used data from airborne
campaigns [30], [33], [36], [37] and the Aquarius satellite [38]
to study covariation (β) using regression for different tem-
poral windows. However, estimating the optimal temporal
window is challenging: if the window is too short, the small
sample size may lead to substantial error in the covariation
estimate. If the window is too long, vegetation and soil
conditions may change over the window and bias covariation
estimates [34], [39], [40].

In this paper, a physical model for covariation (β) is intro-
duced, which avoids challenges in statistically estimating β
from time series, and provides insights into the expected
behavior of the covariation under different soil and vegetation
conditions. In Section II, a general, physics-based formulation
for covariation is derived based on Kirchhoff’s law of energy
conservation. Subsequently, basic formulations of covariation
parameter β for bare and vegetated soils are formulated. The
variations of β for different soil and vegetation conditions
are then examined in Section III. In addition, forward model
estimates of covariation are compared to those obtained based
on regression with SMAP data. Finally, Section IV provides
the summary and conclusions.

II. DERIVATION OF A PHYSICAL MODEL FOR

ACTIVE–PASSIVE MICROWAVE COVARIATION

In this section, we first introduce the physical basis to link
active and passive microwaves for bare soils (Section II-A).
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Next, we describe the scattering (Section II-B) and emission
(Section II-C) scenarios for vegetated surfaces. This is fol-
lowed by the formulation of active and passive microwave
models for vegetated surfaces. We introduce the concept of
active–passive microwave covariation in Section II-D. Finally,
we derive the general physical model for β and covariation of
vegetated and bare soils (Section II-E).

A. Combination of Active and Passive
Microwaves for Bare Soils

In order to link emissivities with reflectivities in the
microwave domain, Kirchhoff’s law of energy conservation is
applied [41], [42, p. 252]. Under thermodynamic equilibrium
conditions in a half-space environment Kirchhoff’s law can be
expressed as [18], [24], [42], [43]

E P = T bP

T
=1− 1

4πcosθi

∫ 2π

φs=0

∫ π
2

θs=0

(|SP P |2(θi , φi , θs , φs)

+ |SP Q |2(θi , φi , θs, φs)
)
sinθsdθsdφs

= 1 − (Rcoh + Rinc). (1)

Equation (1) links the p-polarized emissivity E P [−] to the
bistatic scattering coefficient SP Q including a coherent (spec-
ular) forward Rcoh [−] and an incoherent (diffuse) Rinc [−]
scattering component of the soil surface [10], [13], [41], [42].
Here, TbP [K] is the p-polarized brightness temperature and T
[K] is the effective physical temperature. The local incidence
and scattering angles are θi [rad] and θs [rad], and φi [rad]
and φs [rad] are the incident and scattered azimuthal angles.

Hereafter, the general concept of (1) is refined for long-
wavelength (L-band) scattering over minor rough, nonveg-
etated soils. Roughness strongly affects the magnitude of
emission. Surface roughness is characterized by its vertical
component ks [−], the wavelength-scaled root-mean-square
height of the surface [5]. At L-band and typically when
ks ≤ 0.3 or s around 1 cm, incoherent emission becomes
minor (Rinc → 0) and the coherent (specular) term dominates
scattering reducing (1) to [5, p. 825f], [44], [45]

E P = 1 − Rcoh. (2)

The coherent surface reflectivity Rcoh [−] is taken to
be Fresnel RF

P , with RF
H = |(cos θi − (εs − sin2 θi )

1/2/

cos θi + (εs − sin2 θi )
1/2)|2[−], RF

V = |(εs × cos θi −
(εs − sin2 θi )

1/2/εs × cos θi + (εs − sin2 θi )
1/2)|2 [−], where

εs [–] is the soil dielectric constant. Together with the Fresnel
surface roughness loss fF = e−4×k2×s2×cos2 θi [−] (2) may be
written as [5], [42]

E P = 1 − fF ×RF
P . (3)

At L-band (with a wavelength of about 23 [cm]),
the soil roughness is about one order of magnitude
smaller than the wavelength with root-mean-square heights
between 0.5 and 1 cm [46], [47]. The SAR reflection and
scattering interactions with the surface can therefore be
described by the small perturbation model, also called the
Bragg model, applicable for smooth to moderately rough
surfaces (ks ≤ 0.3) [5]. Hence, the measured copolarized

surface backscatter |SP P |2 [−] for the active SAR scattering
component is modeled as

|SP P |2 = fB×R B
P (4)

where fB is the combined Bragg scattering and loss term
(assuming an exponential spatial correlation function) fB =
8 × (cos2 θi × k × s × k × l)2 · (1 + (2 × k × l ×
sin θi )

2)−(3/2) [−] [5], [42], [48]. The term k × l [−] is the
wavelength-scaled autocorrelation length (horizontal compo-
nent of soil surface roughness) and RB

P [−] is the smooth
Bragg surface reflectivity, RB

H = RF
H and RB

V = |((εs − 1)
(sin2 θi−εs×(1+sin2 θi ))/(εs × cos θi + (εs − sin2 θi )

1/2)2)|2
[–] [5], [10].

In order to link passive (3) and active (4) microwaves,
the equivalence of scattering coefficients will be used. There-
fore, Bragg reflectivity (RB

P ) in (4) needs to be expressed as
proportional to the Fresnel reflectivity (RF

P ), present in (3), by
dividing and multiplying (4) with RF

P . This results in

|SP P |2 = fB × κ×RF
P (5)

with conversion coefficient κ = (RB
P/RF

P ) [−]. Thus, Fresnel
surface reflectivity RF

P is the link to combine active and
passive microwaves via energy conservation. Finally, solving
for RF

P in (5) and substituting this into (3) establishes the link
between the emissivity and the backscatter

E P = 1 − fF ×RF
P = 1 − fF

fB × κ
|SP P |2 (6)

which is valid for smooth and moderately rough bare surfaces.
This concept of connecting active and passive microwaves will
also apply for vegetated soils in Section II-D, but first the
scattering (Section II-B) and emission (Section II-C) scenarios
for the vegetated soil case are introduced.

B. Microwave Scattering in Case of
Vegetation Covered Surfaces

Radar scattering in the presence of vegetated soils can be
formulated based on the first-order distorted Born approxima-
tion as [49]–[51]

|SP P |2 = fB × ∣∣SB
P P

∣∣2+ f D × ∣∣SD
P P

∣∣2+ f V × ∣∣SV
P P

∣∣2
. (7)

Equation (7) is composed of a surface contribution
fB |SB

P P |2 [−], a (double-bounce) surface-vegetation inter-
action contribution fD |SD

P P |2 [−] and a direct vegetation

volume contribution fV |SV
P P |2 [−]. The terms fB [−], fD [−],

and fV [−] are the scattering and loss terms for the surface,
double-bounce, and volume scattering contribution, respec-
tively. A variety of empirical, semiempirical, and theoretical
scattering models exist for the variables in (7). Empirical
and semiempirical models are based on experimental data
that are limited to the vegetation structure of the case study.
Theoretical results are available for models of vegetation as
collection of lossy dielectric shapes such as cylinders for
trunks and branches and discs for leaves [5], [7], [49], [52]. We
adopt the latter approach for vegetation and can describe it as
a continuous or discrete medium (see [53], [54]). The discrete
approach is suitable for covariation modeling because it allows
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simulation of the backscatter from an ensemble of discrete
objects with diverse physical properties (see [55], [56]). One
parsimonious and effective approach, using a homogeneously
filled layer of lossy dielectric discs (plant elements) above
a single-scattering nonpenetrable soil surface, is proposed
by Lang and Sidu [51] and Lang [57]. This approach is
implemented to express the variables of (7) in terms of
surface, double-bounce, and volume reflection terms and to
parameterize soil scattering for connecting active and passive
microwaves. The surface fB×|SB

P P |2 and double fD ×|SD
P P |2

bounce terms describe incoherent and coherent interactions
with the soil surface, which can be expressed by rough
Fresnel surface reflection fF × RF

P , when applying (5) for
the incoherent interactions. Surface reflectivity RF

P will be
used to connect the active and passive microwave domains
in Section II-D.

Following Lang and Sidu [51], the surface and double-
bounce terms are defined as function of RF

P :
fB × ∣∣SB

P P

∣∣2 = fB × γ 2
RP

× RB
P = fB × κ × γ 2

RP
× RF

P (8)

fD × |SD
P P |2 = k4 × δ × VD × d

4π
4×|aP P |2× f F×γ 2

RP
×RF

P

(9)

where |aP P |2 [−] is the mean squared polarizability of the
vegetation bounce in the double-bounce term [57]. Variable
d [m] is the height of the vegetation layer. Wavenumber
k [m−1] is (k = 2π/λ) where λ [m] denotes the wavelength of
the system. Variable δ= ρ × V D [−] is the fractional volume
of the vegetation defined by the particle density ρ = N/V
[m−3] (number of vegetation inclusions N divided by total
volume V [m3]) and the volume of the single vegetation
disk element VD [m3]. Here, VD is defined in terms of the
radius a [m] and the thickness h [m] of the single element
as VD = π × a2 × h. A two-way vegetation attenuation γ 2

RP
through the vegetation applies to the direct surface and the
double-bounce contribution and it is defined after Lang and
Sidu [51] as γ 2

RP
= |e2×i×kz P×d |2 [−], where kz P = k ×

cos θi +k2×app × δ/(2×k ×cos θi ) [m−1] is the polarization-
dependent propagation term.

By substituting (8) and (9) into (7), the total SAR
backscatter is

|SP P |2 = fB × κ×γ 2
RP

× RF
P + k4 × δ × VD × d

π
|aP P |2

× f F×γ 2
RP

× RF
P + f V ×∣∣SV

P P

∣∣2
. (10)

Both ground scattering contributions (surface and double
bounce) are now a function of the Fresnel reflectivity
RF

P which will connect the active and passive domains
in Section II-D.

C. Microwave Emission in Case of
Vegetation-Covered Surfaces

In the presence of vegetation, microwave emission relation
to soil and vegetation physical conditions can be approximated
using the zeroth-order solution of the radiative transfer equa-
tion or the τ −ω model [5], [7], [58]. It captures three contri-
butions: direct emission from vegetation T bV , soil-reflected

emission from vegetation T bV S , and direct emission from
soil T bS . As emissions with soil contribution (T bS, T bV S) can
also be related inversely to lossy Fresnel reflectivity fF×RF

P ,
used later as link for active-passive microwave combination,
the τ − ω model can be written as [59]

T bP = T bV + T bV S + T bS = TV × (1 − ω)(1 − γ )

× (
1+ fF ×RF

P ×γ
)+TS×(

1− fF×RF
P

) × γ (11)

where γ = e−τ/cosθi [−] is the one-way vegetation loss
term and considered to be the same for both polarizations
within the τ − ω model [60]. θi [rad] is the incidence angle.
The nadir vegetation opacity τ [−] is related empirically to
the physical characteristics of the vegetation layer through
τ = b × VWC, where VWC [kg/m2] is the vegetation
water content and b [m2/kg] is a structure-dependent empirical
parameter for the microwave opacity [55], [56], [58]. Variable
ω [−] is the effective single scattering albedo. Both τ and
ω are retrievable from radiometer data using a multitemporal,
dual-channel estimation algorithm [61] or can be derived from
other ancillary data [36], [59], [62]. Under the assumption of
isothermal conditions (TS = TV ) during SMAP acquisitions
at 6 A.M. local time (11) is rewritten as [36]

T bP

T
= E P = (γ × (1 − ω)(1 − γ ) − γ )× f F×RF

P

+ (γ + (1 − ω)(1 − γ )) (12)

whereby all emissions involving soil interaction are now a
function of the Fresnel reflectivity RF

P .

D. Combination of Active and Passive Microwaves for
Vegetated Surfaces and Definition of Covariation
Parameter β

Combining active and passive microwave terms is done
via Fresnel reflectivity RF

P , as shown for the bare soil case
in Section II-A. The same principle applies for vegetated soils.
In order to combine active and passive microwave terms (10)
is solved for RF

P

RF
P = |SP P |2 − f V × ∣∣SV

P P

∣∣2

fB × κ×γ 2
RP

+ k4×δ×VD×d
4π 4 × |aP P |2× f F×γ 2

RP

.

(13)

Substituting (13) in (12) and applying some rearrangement
results in

E P = fF × (γ (1 − ω)(1 − γ ) − γ )

fB × κ×γ 2
RP

+ fF × γ 2
RP

×V D×k4 d×δ
π |app|2

× (|SP P |2− fV ×∣∣SV
P P

∣∣2)+γ +(1−ω)(1−γ ). (14)

Equation (14) is a linear physics-based relationship linking
the total backscattering coefficient |SP P |2 measured by the
SAR and the emissivity E P observed by the radiometer.
This linear formulation is identical in form to the SMAP
baseline active-passive disaggregation model described in (10)
of [36], which was established empirically in prestudies to the
mission [31]–[34]. In this statistical approach the SAR
backscatter intensity |SP P |2 is related linearly to the emission
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measured with the radiometer E P by the slope βp−pp [−] and
the intercept αp−pp [−] of the time-series linear regression

E P = βp−pp × |SP P |2 + αp−pp . (15)

The physics-based model for the covariation of emission and
backscatter in (14) demonstrates the linearity of the active–
passive microwave covariation which results in the expressions
of the βp−pp and αp−pp parameters in (15)

βp−pp = fF×(γ (1−ω)(1−γ )−γ )

fB ×κ×γ 2
RP

+ fF ×γ 2
RP

×V D×k4 d×δ
π |app|2

(16)

and

αp−pp = − fF × (γ (1 − ω)(1 − γ ) − γ )

fB × κ×γ 2
RP

+ fF×γ 2
RP

× VD × k4 d×δ
π |app|2

× fV × |SV
P P |2 + (γ + (1 − ω)(1 − γ )). (17)

The volume-only scattering ( fV × |SV
P P |2) and volume-only

emission (γ + (1 − ω)(1 − γ )) components appear separately
and can only be found in αp−pp . Therefore, βp−pp is inde-
pendent of both direct vegetation volume emission as well as
scattering. The active-passive disaggregation approach used in
the SMAP algorithm does not require estimates of αp−pp , but
it is strongly influenced by the parameter βp−pp [36], which
is modeled on physics basis in the following.

E. Physical Model of Covariation for
Vegetated and Bare Soils

The physical model of emission and backscatter covariations
with respect to surface dielectric constant (soil moisture)
changes are dependent on polarization, dielectric and structural
characteristics of vegetation, and roughness of the soil surface.
Using (16), they can be summarized as

βh−hh
Veg = fF × (γ (1 − ω)(1 − γ ) − γ )

fB × κ × γ 2
RH

+ fF×γ 2
RH

× VD×k4 d×δ
π |aH H |2

βv−vv
Veg = fF × (γ (1 − ω)(1 − γ ) − γ )

fB × κ×γ 2
RV

+ fF × γ 2
RV

×V D × k4 d×δ
π |aV V |2 .

(18)

The expressions for the mean squared polarizabilities
|aH H |2 and |aV V |2 as a function of vegetation layer char-
acteristics are summarized in Appendix. The specification
of the polarizabilities allows modeling β

p−pp
Veg for vegetation

structure of horizontally as well as vertically oriented canopies.
The vegetation layer and the rough soil cause losses and
scattering of the active and passive microwaves. A main insight
derived from the expressions in (18) is that the covariation
parameter β

p−pp
Veg is the ratio emission losses divided by

backscatter losses. The emission loss factors related to soil
and vegetation ( fF , γ , ω) are evident in the numerator. The
denominator includes the surface contribution backscatter loss
factors ( fB , κ, γRP ) and the double bounce backscatter and
loss factors (related to fF , γRP , VD, k, d, δ, |aP P |2).

When only soil scattering is present (no vegetation cover
such that γ = 1, ω = 0, and d = V D = δ = 0), the

covariation parameter in (18) reduces to β
p−pp
Bare

β
p−pp
Bare = − fF

fB × κ
= − fF

fB×
R B

P
RF

P

(19)

which is simply a combination of (3) and (5). The bare soil
β

p−pp
Bare is thus the ratio of Fresnel fF and Bragg fB roughness

loss terms, scaled by κ . Soil roughness is the only phys-
ical variable controlling β

p−pp
Bare . For horizontal polarization

βh−hh
Bare = −( fF / fB) because κ = 1 (identity of the Fresnel

and Bragg reflectivity, RF
H = RB

H ). For vertical polarization
βv−vv

Bare = −( fF/ fB × κ) because κ �= 1 and reflection
coefficients differ (RF

V �= RB
V ). Section II-A introduced the

expressions for the Bragg and Fresnel reflectivity and rough-
ness losses

III. ANALYSIS OF THE PHYSICAL MODEL FOR

COVARIATION AND COMPARISON WITH

SMAP ESTIMATES

In this section, we analyze the dependence and magnitude
of the scattering and losses in SAR and radiometer expressed
in (18) and (19) with respect to the physical roughness
conditions of surface (parameters s and l) and vegetation
(parameters d , δ, ω, and τ ). We start with the simpler
covariation scenario for bare soils and follow with the more
complex vegetated surfaces. We investigate the sensitivity of
the physical forward model for covariation to various surface
roughness and vegetation characteristics in order to understand
the dynamic range and behavior of active–passive microwave
measurements in the context of soil moisture estimation.
Covariation (β) can be either expressed as a dimensionless
quantity [-] or in inverse decibels [dB−1] depending on the
units of |SP P |2 and values have previously been reported
using both of these conventions [20], [30], [36], [38]. In the
following sensitivity analysis, |SP P |2 is considered in linear
units [directly relating to the underlying physics in (1)],
so that covariation (β) is dimensionless. For system settings a
constant θi = 40°, incidence angle is assumed for both instru-
ments and the frequency is fixed at L-band (SAR: 1.26 [GHz]
and Radiometer: 1.41 [GHz]) identical to the original SMAP
acquisition scenario (before failure of the SAR).

We first analyze the covariation scenarios for bare soils
using the following soil conditions: the surface roughness is
set to a low to medium roughness range with vertical and
horizontal roughness statistics (s, l) of 0.005 [m] and 0.05 [m],
respectively [46], [47]. The soil half-space medium is assumed
to nominally have a mid-range moisture level represented by
a dielectric constant εS = 20 + 3i [63]. In the bare soil case,
it is possible to compare the physical model β

p−pp
Bare from (19)

to independent sources of information: the integral equation
method (IEM) and the 3-D numerical method of Maxwell’s
equations (NMM3D) model [10], [24], [64]. The NMM3D
is a set of simulations based on numerical solutions of the
Maxwell equations in 3-D. It is a rigorous source of numerical
solutions data on bare but rough surface emissions and scatter-
ing. In addition, the well-known and frequently applied IEM
is included as another physics-based model for comparison
against the physics-based β

p−pp
Bare forward model [64].
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Fig. 1. Vertically (red lines) and horizontally (blue lines) polarized
covariation parameter β

p−pp
Bare from (19) or the forward model (solid lines)

versus effective vertical roughness (ks) compared with statistically derived
β

p−pp
Bare values from NMM3D (circles) and IEM (dotted lines) model outputs.

The kl value is 1.5 for the forward model and IEM. The NMM3D model is
calculated for a range of four different kl values per ks value (see Table I).

TABLE I

SOIL ROUGHNESS VALUES FOR BARE SOIL SIMULATIONS WITH NMM3D

Fig. 1 shows the vertical and horizontal polarizations
of β

p−pp
Bare for the three models (assuming 1.4 [GHz] emission

and backscatter for easier comparison) along increasing soil
roughness (ks) with a fixed correlation length (kl) of 1.5 for
the forward model and IEM and a variable kl (see Table I) for
NMM3D. The latter is considered as reference method and is
therefore shown for varying both ks and kl.

In the cases of IEM (dashed lines) and NMM3D
(symbols), the covariation parameter (β p−pp

Bare ) is calculated for
each ks step as the statistical correlation between variations
in emission and changes in backscatter within a range of
potentially occurring soil dielectric constant values in nature.
The solid lines in Fig. 1 are from (19) and represent the
ratio of surface roughness-induced losses in the observed
emission and backscatter. Generally, β

p−pp
Bare decreases to less

negative values with increasing roughness indicating a higher
dynamic range of backscatter when compared to emissivity.
Bare soil βv−vv

Bare decreases faster in magnitude than βh−hh
Bare

due to different loss and scattering types (Fresnel, Bragg) in
the ratio of (19). But for both, an upper and strictly negative
bound for the covariation (β) can be found as characteristic
of the physical model. This is consistent with statistically

modeled (strictly negative) covariation in Guerriero et al. [20].
Although positive β-estimates are sometimes found for data-
derived covariations, these are attributed to measurement
uncertainties [31], [32], [36], [38].

Comparison can be made between the physical
model (19) or β

p−pp
Bare with the NMM3D retrievals as

well as IEM retrievals of β p−pp . All three β-estimates follow
a sharp rise in magnitude with increase of roughness ks.
Although with some offset, the three estimates for bare soil
are consistent, but non-overlapping. The forward model marks
the upper bound and NMM3D is near the lower bound of the
value range.

These multicomponent polarimetric scattering models
(IEM, NMM3D) at L-band are not fully captured by the
parsimonious Fresnel and Bragg models implemented in the
forward case. This explains the differences between the model
simulations. The Fresnel and Bragg models represent two
scattering types lacking the generality (large validity range for
roughness) inherent to NMM3D or IEM. However, the Fresnel
and Bragg scattering models are analytically tractable and
computationally less intensive than NMM3D or IEM.

The transition of the scattering and emission scenario from
bare to vegetated soil conditions increases the complexity of
the forward model for covariation. The following behaviors
of covariation parameter β

p−pp
Veg are expected and tested using

the forward model.
1) Also under vegetated soil conditions, β

p−pp
Veg should

increase toward zero with rising soil surface roughness
(s, l) due to the higher roughness sensitivity of backscat-
ter (SAR) in comparison with emissivity (radiometer).

2) β
p−pp
Veg should increase toward less negative values with

growing vegetation height d , vegetation fractional vol-
ume δ as well as VWC, as the backscatter sensitivity
(SAR) is preserved mainly due to the effects of double
bounce [20], while attenuation losses reduce emissivity
dynamics (radiometer).

We test these hypotheses quantitatively by applying the devel-
oped physical model of covariation β

p−pp
Veg in (18). The covari-

ation model contains several vegetation parameters, so that the
full parameter space cannot be explored explicitly. Instead,
we combine parameters into physically meaningful groupings
[for example, VWC as shown in (20)] and consider a nominal
set of parameters that are chosen to be representative of a
typical (agricultural) canopy. They are listed in Table II.

The vegetation volume is filled with lossy dielectric plant
disc elements forming a volume of biomass. The physical den-
sity of the biomass ρE is to be compared with the liquid water
(ρW = 1000 [kg/m3]) and the nominal value is typical for
a cropped stand of mature corn. Natural vegetation can have
biomass physical density ρE as low as 100 [kg/m3] depending
on biome and type. The real part of the dielectric constant of
the plants ε�

V is taken to be the gravimetric content that is
water (physical density of biomass ρE divided by the density
of water ρW ) multiplied by the dielectric constant of water
(εW = 80+0i) [65], [66]. The dielectric constant of vegetation
is therefore retrieved effectively by ε�

V = (ρE/ρW ) × εW

(including ε��
V = ε�

V /25). This results in εV = 57.7 + 2.3i
as shown in Table II. Several of the vegetation parameters can
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TABLE II

NOMINAL VALUES FOR SYSTEM, SOIL, AND VEGETATION VARIABLES

be combined to form the VWC [kg/m2]

VWC = ρE × ρ × VD × d = ρE × δ × d. (20)

The VWC forms a useful combined parameter to represent the
vegetation condition, and it will be used in Figs. 2–8 as the
axis for vegetation.

In addition, the plant elements are strongly vertically ori-
ented with a uniform and narrow (10°) plant orientation
distribution width � with respect to the z-axis perpendicular
to soil plane [51].

For emission, the scattering albedo and opacity of the
covering vegetation are set to ω = 0.05 and b = 0.11 (used
in conjunction with VWC to estimate τ : see Section II-C)
assuming a polarization-independent, vegetation attenuation of
an average (agricultural) canopy [36], [58], [59], [62].

The model of β
p−pp
Veg allows polarization dependence due to

preferential orientations within the vegetation volume leading
to anisotropic scattering (SAR). Fig. 2 depicts β

p−pp
Veg for

two orientation cases of the vegetation canopy with a plant
orientation distribution width of 10° around the dominant
polarization axis (see Table II). They result from the main
orientation of the lossy dielectric elements (plant constituents)
forming the volume. The top panel assumes dominant verti-
cally oriented vegetation for β

p−pp
Veg –modeling, whereby polar-

izabilities (αH H , αV V ) are interchanged compared to (18),
while the bottom panel describes a dominant horizontal one.
The β

p−pp
Veg behavior of these two cases shows similar trends,

but with interchanged polarizations caused by rotation of the
reference frame. Due to these similar trends, we only consider
the vertically oriented case in remaining analysis.

Fig. 2. Vertically (red lines) and horizontally (blue lines) polarized covari-
ation parameter β

p−pp
Veg versus VWC [kg/m2] for different main orientations

of the vegetation canopy: (Top) vertically and (Bottom) horizontally oriented
canopy.

β
p−pp
Veg is considerably smaller in magnitude when compared

to β
p−pp
Bare , under the same (nominal) roughness conditions

(see Table II), due to significant amount of losses in the
vegetation layer. It increases toward less negative values with
rising VWC due to growing or wetting of the vegetation
canopy. This confirms both hypotheses outlined earlier and
is also consistent with simulated results from the TorVergata
model [20]. Moreover, this behavior of covariation is also
found in β-estimates from experimental and airborne cam-
paigns ([30, Fig. 8]; [31, Fig. 4]; [32, Fig. 4]; [33, Fig. 5];
[36, Figs. 6 and 10]; [37, Fig. 5(b)]).

Even under vegetated canopies, the roughness of the soil
is a factor in covariations of emission and backscatter,
Fig. 3 shows the covariation parameter for vegetated soils
β

p−pp
Veg versus VWC for different soil roughness (s) cases.

Lower VWC results in larger spread in β
p−pp
Veg for different

s-values. The same can be stated to a smaller extent for
the horizontal component of the soil surface roughness l
depicted in Fig. 4. For a VWC of about 0.1 [kg/m2] or lower
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Fig. 3. Vertically (red lines) and horizontally (blue lines) polarized covari-
ation parameter β

p−pp
Veg as a function of increasing vegetation cover (VWC)

for different vertical soil roughness values (s) [m]: solid line: s = 0.0025,
dashed line: s = 0.005, dashed-dotted line: s = 0.0075; dotted vertical line
indicates VWC value of 0.1 [kg/m2].

Fig. 4. Vertically (red lines) and horizontally (blue lines) polarized covari-
ation parameter β

p−pp
Veg as a function of increasing vegetation cover (VWC)

for different horizontal soil roughness values (l) [m]: solid line: l = 0.01,
dashed line: l = 0.05, and dashed-dotted line: l = 0.09.

(dotted line in Fig. 4), a pronounced change from slightly
rough soils (s = 0.0025 [m]) to rough soils (s = 0.0075 [m])
is evident.

The absolute magnitude of β
p−pp
Veg increases for vertical

polarization toward less negative values from −5 to −3.
However, the magnitude level of β

p−pp
Veg is still lower than

for β
p−pp
Bare due to the attenuating influence of vegetation

cover. The asymptote of the covariation parameter toward zero
is due to an increase in backscatter dynamic range mostly
due to the effects of double-bounce (soil vegetation) scattering
and a decrease of emissivity dynamic range due to vegetation
attenuation.

Fig. 5. β
p−pp
Veg as a function of increasing vegetation cover (VWC) when both

attenuated surface and double-bounce contributions are included (solid lines)
and when only the double-bounce contribution is included (dashed lines).

The relative contribution of attenuated direct surface
backscatter and double bounce can be discerned from (18).
Fig. 5 shows β

p−pp
Veg as a function of increasing vegetation

cover (VWC) when both the attenuated surface contribution
[first term in denominator of (18)] and the double-bounce
contribution [second term in (18)] are included (solid lines).
When only the proportion of double-bounce (soil-vegetation)
contribution is included, it is plotted as dashed lines for
both polarization pairs. β

p−pp
Veg for the attenuated surface

contribution (with magnitudes of −14 to −10 for vertical
and −85 to −41 for horizontal polarization) is not shown
in Fig. 5 to preserve readability.

The proximity of the curves indicates that the double-
bounce term dominates the backscatter covariation over almost
the entire VWC range. Only for sparse vegetation cover
(VWC < 0.5 [kg/m2]), the single-bounce (surface scat-
tering) term gives a more substantial contribution to the
covariation. Since the distorted born approximation is used
within the covariation model, higher order (multiple) scat-
tering terms are not included and they may reduce the
dominance of the double bounce term. For higher values of
VWC (VWC > 1.5 [kg/m2]), both βh−hh

Veg and βv−vv
Veg converge

to values close to zero due to a strongly diminished emissivity
dynamic range, implying a reduced covariation of SAR and
radiometer measurements. So far the dependencies on different
soil surface conditions under a vegetation canopy have been
explored.

Next, we examine the sensitivity of covariation (β p−pp
Veg )

to various vegetation conditions. Key among the vegetation
parameters is the physical density of the single plant elements
ρE [kg/m3]. The physical density can be a fraction of the liquid
water density ρW = 1000 [kg/m3] depending on the relative
amount of water and cellulose and lignin in the plant fiber.
Mature crops tend to have higher values (up to 800 [kg/m3]),
but natural vegetation can have physical densities as low as
100 [kg/m3] depending on biome and type. Fig. 6 shows the
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Fig. 6. Vertically (red lines) and horizontally (blue lines) polarized covari-
ation parameter β

p−pp
Veg for different physical plant densities (ρE ) [kg/m3]

versus VWC [kg/m2]: solid line: ρE = 100, dashed line: ρE = 400, and
dashed-dotted line: ρE = 800.

behavior of β
p−pp
Veg with respect to changes in the physical

density of the single plant elements (ρE ) forming the veg-
etation volume. The physical density is varied over a wide
range of values. The covariation β

p−pp
Veg decreases significantly

in magnitude for vegetation with greater physical density.
Both emission and backscatter attenuation are affected by the
density. Furthermore, the vegetation bounce of the double-
bounce contribution is affected (through the polarizability
parameter).

Since a number of vegetation parameters are encapsulated
in VWC [see Table II and related discussion surrounding
estimation of VWC in (20)] and given that the covariation
parameter is shown in the figures as a function of this grouped
parameter, the sensitivity to the constituent parameters can be
discerned from the dependence of β

p−pp
Veg on VWC. Therefore,

variations in factors, such as canopy density (ρ), radii and
thickness of the plant elements (a2 and h for VD = πa2h),
and vegetation height (d), generally follow the same effect
on β

p−pp
Veg as the one evident to VWC. The impact of variations

in these encapsulated factors is expressed through respective
variations in VWC. For the sake of parsimony, figures showing
sensitivity to these parameters are generally not included.

The only exception is the radius of the plant elements (a),
which is additionally displayed in Fig. 7 due to its square
root dependence on β

p−pp
Veg . As a consequence, a significant

decrease in β
p−pp
Veg magnitudes is revealed with increasing

plant radius.
Factors affecting emission also influence the dependence

of β
p−pp
Veg on VWC. Fig. 8 shows the sensitivity to the vegeta-

tion opacity parameter b. The influence of b on covariation
(β p−pp

Veg ) directly correlates with the increase in VWC via
τ = b×VWC and is therefore negligible for sparse vegetation
cover and more distinct at VWC levels of 0.7 [kg/m2] and
higher. The dynamic range of the numerator in (18) or emis-
sion is reduced with increasing values of b. Hence, higher

Fig. 7. Vertically (red lines) and horizontally (blue lines) polarized covaria-
tion parameter β

p−pp
Veg for different leaf radii (a) [m] versus VWC [kg/m2]:

solid line: a = 0.05, dashed line: a = 0.075, and dashed-dotted line: a = 0.1.

Fig. 8. Vertically (red) and horizontally (blue) polarized covariation parame-
ter β

p−pp
Veg for a different opacity parameter b [m2/kg] versus VWC [kg/m2]:

solid line: b = 0.1, dashed line: b = 0.2, and dashed-dotted line: b = 0.3.

values of this parameter lead to reduced covariation between
emission and backscatter for more dense canopies. From the
structure of (18), it is evident that the other major emission
parameter, namely, the scattering albedo ω also influences
the dynamic range of emission. However, its influence on
covariation is negligible (�β

p−pp
Veg <0.1) given the variation

of its dynamic range from 0.02 to 0.12 (not shown).
In summary, the β

p−pp
Veg relationships presented

in Figs. 2–8 show the effects of surface roughness and
VWC on the covariation between emission and backscatter.
The covariation is with respect to changing soil dielectric
constant (soil moisture) for a given vegetation cover
depending on geographic location. Roughness affects both the
emission and backscatter (direct surface and double-bounce)
terms in the numerator and denominator of (18). Increasing
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vegetation cover significantly reduces the dynamic range of
both emission and backscatter and thus affects the covariation.
The covariation amplitude is large for low-density vegetation,
but eventually and with increasing vegetation cover, the
amplitudes of the emission and backscatter are reduced and
the surface soil conditions are no longer detectable.

The magnitude of the covariation parameter β
p−pp
Veg can be

compared with regression-based covariation estimates from
field campaign and satellite-measured active–passive data
sets [30], [31], [37], [38]. However, there are challenges in
making direct comparisons between model and measurements.

First, high-quality field measurements of vegetation struc-
ture content (ρ and ρE ) and VWC are typically not available
in experimental field campaigns, especially not over the entire
range of physically possible values. Estimates of VWC are
often based on optical observations which observe only the
canopy top and not the full vegetation volume. Recently,
some studies use the radar vegetation index (RVI) as a proxy
for VWC [67]–[69]. However, the relationship between RVI
and VWC is error prone. For example, RVI may be biased
by contributions from the ground signal depending on the
penetration depth at L-band and would need to be removed
by polarimetric decompositions [70], [71]. A second challenge
is that field campaigns are usually short in duration which
does not allow robust time-series regression for the covariation
parameter β.

Konings et al. [61] developed a methodology to estimate
vegetation opacity τ [−] from time series of L-band brightness
temperature observations in two polarizations. Based on the
application of the same methodology to SMAP measurements,
a data set on τ is available for analysis. The opacity can
be converted to estimates of VWC through the parameter
b (see Table II). Furthermore, the global SMAP radar and
radiometer colocated observations, introduced in [72] and
ranging from April 14, 2015 to July 7, 2015 (period of
available SMAP backscatter measurements), can be used
to estimate β

p−pp
Veg through time-series regression according

to the SMAP active–passive baseline algorithm [36]. These
two measurements-derived data sets provide an independent
set of β

p−pp
Veg -VWC estimates that can be compared with

the physics-based forward model developed in this paper.
Figs. 9 and 10 show a comparison of the forward modeled
covariation parameter β

p−pp
Veg for horizontal and vertical polar-

izations, respectively. The color-shaded background shows the
measurement-derived β

p−pp
SMAP-VWC estimates and the color

shading is the frequency of occurrence of the pairs across
the global land surface. The lines in Figs. 9 and 10 are
based on (18) for the nominal parameters of Table II and
for a range of plant physical densities (ρE ). In order to keep
consistency and comparability with former modeled results
(see Figs. 2–8), the parameters of the forward model (lines)
in Figs. 9 and 10 are not optimized for different regions on the
globe. They remain as the nominal values in Table II except for
physical plant density which is shown for its dynamic range.
Hence, only the magnitude of the covariation parameter β

p−pp
Veg

and its trend with increasing VWC should be compared.
The results in Figs. 9 and 10 show that the functional form

Fig. 9. Covariation parameter βh−hh
Veg modeled along VWC [kg/m2]

with different physical plant densities (ρE ) [kg/m3]: 100 (solid line),
400 (dashed line), 800 (dashed dotted line) on top of a bivariate (2-D)
histogram of global, SMAP-derived βh−hh

SMAP-values (excluding ice-covered
regions); coloring of histogram from dark blue (low counts) to yellow
(high counts).

Fig. 10. Covariation parameter βv−vv
Veg modeled along VWC [kg/m2]

with different physical plant densities (ρE ) [kg/m3]: 100 (solid line),
400 (dashed line), 800 (dashed dotted line) on top of a bivariate (2-D)
histogram of global, SMAP-derived βv−vv

SMAP-values (excluding ice-covered
regions); coloring of histogram from dark blue (low counts) to yellow
(high counts).

(VWC dependence) and magnitude of the β
p−pp
Veg parame-

ters in the physical covariation model and those estimated
from SMAP observations using time-series regression are
comparable.

However, the degree to which the covariation model
matches with the SMAP observations is different for each
polarization. βh−hh

Veg envelopes βh−hh
SMAP in Fig. 9, whereas βv−vv

Veg
shows an offset compared to βv−vv

SMAP in Fig. 10. The reason is
rooted in the nominal parameter settings modeling only three
specific, out of all possible natural scenarios.
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When modeling both covariations (βh−hh
Veg , βv−vv

Veg ), the nom-
inal and mainly vertical orientation of the vegetation
(see Section III, including Fig. 2 with settings in Table II),
leads to vertical covariations βv−vv

Veg only partially representing
the orientation of vegetation cover on global scales. As shown
in Fig. 2, the principal orientation of the lossy dielectric
elements in the vegetation layer can modulate the relative mag-
nitudes of the covariation parameter at different polarizations.
Moreover, the applied modeling approach of [51], using one
homogeneously filled layer of discs above a single-scattering
nonpenetrable soil surface is a significant simplification for
global variation in vegetation and soil scattering. However,
optimization and adaptation of the forward model settings for
different landscape conditions are beyond the scope of this
paper that focuses on theoretical foundations of a physical
forward model for covariation.

IV. SUMMARY AND CONCLUSION

Soil moisture information at high spatial resolution and
with global coverage can be obtained with combined use
of active and passive microwave remote sensing. Whether
it is with measurements from the same platform, such as
with the NASA SMAP mission L-band sensors (albeit for
short duration) or with combination of microwave radiome-
ters and SAR on different platforms, the physics underlying
covariations of active and passive microwaves need to be
understood. Relatively, the radiometer measurements are more
sensitive to surface soil moisture, but allow only coarse
resolution mapping. SAR measurements are more sensitive
to surface roughness and vegetation conditions, but have
the resolution advantage over radiometer measurements. The
optimal mapping capability is built on combining these two
measurements through their covariation and taking advantage
of the relative strength of each observation. The active and
passive microwave measurements are linked through a critical
covariation parameter β that can be currently statistically esti-
mated over short (subseasonal) time periods. This parameter is
intended to capture the covariations of the active and passive
measurements due to changing soil moisture conditions but for
given (local) vegetation cover and roughness conditions. The
parameter is therefore a function of the characteristics of the
vegetation canopy (structure, density, and dielectric constant
properties) and their changes over time.

In this paper, we introduce a physics-based forward
model for covariation (β) in order to gain insight into
how covariation depends on the dominant surface roughness
and vegetation conditions. The physical model in case of
bare soils (β p−pp

Bare ) is related to surface roughness char-
acteristics such as wavelength-scaled vertical (root-mean-
squared height ks) and horizontal (autocorrelation length kl)
roughness. Over surfaces with vegetation cover, the physical
model (β p−pp

Veg ) is additionally dependent on vegetation struc-
ture and orientation, density, and dielectric properties. The
forward model incorporates incidence angle dependence which
is advantageous with SAR applications. Upon appropriate
modification necessary for shifts in measurements frequency,
the forward model may be applied to other mixtures of active
and passive microwave channels.

The first insight resulting from this paper is that the
statistically determined covariation parameter βp−pp is equiv-
alent to the ratio of losses for emission over scattering and
losses for backscattering due to surface roughness and veg-
etation conditions. Hence, these losses and scattering are in
turn physically related to surface roughness and vegetation
characteristics. The study provides sensitivity analyses with
respect to these bio- and pedo-physical parameters. Generally,
the covariation, expressed by β

p−pp
Bare increases toward less-

negative values for increasing soil roughness due to the
higher roughness-sensitivity of backscatter in comparison with
emissivity. Increasing vegetation cover similarly leads to a
decrease of covariation magnitudes for β

p−pp
Veg . With the

physics-based forward model, the functional dependence on
these characterizations of the soil surface and vegetation
canopy can now be explored. The proposed forward model
for backscatter includes attenuated surface as well as double-
bounce terms. The double-bounce term is often the dominant
loss contribution at L-band. This effect is more pronounced
for denser and thicker plant constituents. For VWC values
>5 [kg/m2] both βh−hh

Veg and βv−vv
Veg converge to values close

to zero, implying a weak, polarization-independent covariation
of SAR, and radiometer measurements. Below 5 [kg/m2]
a clear polarization dependence on covariation is evident
for vegetated surfaces due to vegetation orientation effects.
Vertically polarized βv−vv

Veg is closer to zero than horizontally

polarized βh−hh
Veg if the vegetation is mainly vertically oriented.

However, this dependence can be reversed for horizontally
oriented vegetated surfaces.

The physical model for covariation is limited to the range
of validity of its constituent ingredients. For example the
assumption of a single-layer vegetation volume above an
impenetrable (no soil volume scattering) soil surface as well
as the choice of the physical emission and scattering models
used for describing the soil and vegetation interactions limit
the range of validity.

In the future and in general, the polarization dependence of
vegetation attenuation and scattering need to be incorporated
into the τ − ω model for passive microwave remote sensing.
Modeling and observation-based estimates of polarization-
dependent parameters remain a challenge. The physical model
for active and passive covariation introduced in this paper is
modular and can incorporate improvements in the τ −ω model
when they are available. Similarly, the characterization of
the vegetation topology, distribution, and dielectric properties
affects the active microwave measurements. The improvements
in the characterization are alternative vegetation models which
can be incorporated into the modular model introduced in
this paper. Finally, the full range of soil surface roughness
cannot be completely captured by the Bragg and Fresnel
scattering models. But these constituent model elements can be
replaced when applied to very rough surfaces such as ploughed
fields.

This paper of the physical forward model of covariation
opens the path for follow-on development of physics-based
inversion and retrieval algorithms. It also paves the way to
explore the expected shifts in the behavior of the covariation
parameter when different microwave frequency channels are
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used for the emission and backscatter. These extensions are
subjects for follow-on studies.

APPENDIX

POLARIZABILITY OF THE VEGETATION BOUNCE

The discrete model of Lang and Sidu [51] describes
backscattering from a layer of vegetation over a flat lossy
ground using the distorted born approximation. The vegetation
layer is composed of lossy dielectric discs with given orienta-
tion statistics. Interaction with these discs (vegetation bounce)
occurs within combined soil-vegetation (double-bounce) scat-
tering (see Section II-B). The polarizabilities of the vegetation
bounce for the double-bounce term for both co-polarizations
are [51]

|αH H |2 = |αyy|2= |αr sin2 θ + αθcos2 θ + αφ |2 (A.1)

|αV V |2 = |(− cos2 θi (αr sin2 θ + αθ cos2 θ + αφ)

+ sin2 θi (αθ sin2 θ + αr cos2 θ))|2. (A.2)

The overbar represents the angular averaging with respect to
a distribution of orientation angles θ to a mean orientation
angle �. A uniform probability density function with orien-
tation range parameter width � is used [51]. Orientation θ
represents the angle between the z-axis and the normal of the
spheroidal particles. Parameters αr , αθ , and αφ are a function
of the complex dielectric constant of the vegetation εV [57]

αr = εV − 1

εV
and αθ = αφ = εV − 1. (A.3)
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