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Abstract
To bridge the knowledge gap between (a) our (instantaneous-to-seasonal-scale) pro-
cess understanding of plants and water and (b) our projections of long-term coupled 
feedbacks between the terrestrial water and carbon cycles, we must uncover what 
the dominant dynamics are linking fluxes of water and carbon. This study uses the 
simplest empirical dynamical systems models—two-dimensional linear models—and 
observation-based data from satellites, eddy covariance towers, weather stations, and 
machine-learning-derived products to determine the dominant sub-annual timescales 
coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant 
modes across the Contiguous United States: (1) a negative correlation timescale on 
the order of a few days during which landscapes dry after precipitation and plants in-
crease their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal-
scale positive covariation through which landscape drying leads to decreased growth 
and carbon uptake. The slow (positively correlated) process dominates the joint distri-
bution of local water and carbon variables, leading to similar behaviors across space, 
biomes, and climate regions. We propose that vegetation cover/leaf area variables link 
this behavior across space, leading to strong emergent spatial patterns of water/car-
bon coupling in the mean. The spatial pattern of local temporal dynamics—positively 
sloped tangent lines to a convex long-term mean-state curve—is surprisingly strong, 
and can serve as a benchmark for coupled Earth System Models. We show that many 
such models do not represent this emergent mean-state pattern, and hypothesize that 
this may be due to lack of water-carbon feedbacks at daily scales.
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1  |  INTRODUC TION

The stability of ecosystems and local climates is controlled by 
two-way—or “coupled”—feedbacks between the water and car-
bon cycles (Green et  al., 2017; Humphrey et  al., 2021; Lemordant 
& Gentine, 2019; Sage, 2020; Yang et  al.,  2019). In one direction, 
water is a primary control on interannual carbon cycle variability 
(Piao, Wang, Wang, et al., 2020). Water controls ecosystem stress 
(Anderegg et al., 2015; Bartlett et al., 2016; Liu et al., 2020), pro-
ductivity (Babst et  al.,  2019; Biederman et  al.,  2016; Feldman, 
Chulakadabba, et al., 2021; Peters et al., 2018; Post & Knapp, 2019; 
Scott et  al.,  2015), and biogeography (Babst et  al.,  2019; Jiao 
et al., 2021). In the other direction, terrestrial photosynthesis facil-
itates the diffusive and convective transfer of water and energy at 
the land-atmosphere interface (Green et al., 2017; Hong et al., 2019; 
Keenan & Williams,  2018; Knauer et  al.,  2017; Stoy et  al.,  2019; 
Ukkola et al., 2016).

While many questions about the future of the climate and eco-
systems concern the coupled feedbacks between water and carbon 
on annual-to-century timescales, our mechanistic understanding of 
the governing processes is largely at the instantaneous-to-seasonal 
scales. Without proper understanding of how mechanistic dynam-
ics scale to longer-term patterns and behaviors, it is not possible to 
constrain uncertainty or even develop basic intuition of longer-term 
projections of the Earth system.

The mechanisms linking the terrestrial water cycle and ecosystem 
carbon uptake (gross primary productivity [GPP]) depend on ecosys-
tem structural dynamics (e.g., succession, growth, phenology, and 
mortality), vegetation physiology (e.g., chemical signaling, plant hy-
draulics, and stress responses), hydrogeography, biogeography, and 
atmospheric boundary layer gas and energy exchanges. These are 
difficult to represent in global models due to the substantial diver-
sity of plant functions, traits, and responses to stress (D'Orangeville 
et al., 2018; dos Santos et al., 2021; Lavergne et al., 2019; Niinemets 
et al., 2015; Song et al., 2023). Because of this, it would be beneficial 
to establish simple benchmarks of the coupled water/carbon rela-
tionship which capture the dominant dynamics and co-variabilities 
of the two cycles.

We present one such benchmark, namely the dynamic feed-
backs between landscape-integrated carbon uptake (GPP) and 
water fluxes. We specifically use the landscape evaporative frac-
tion (EF = �E∕

[

�E + H
]

, for latent heat flux �E and sensible heat 
flux H) as our water metric. The normalization of latent heat flux 
by available energy serves to remove many confounding effects 
of temperature and radiation differences across multiple sites. 
The terrestrial water cycle itself is tightly coupled so that water 
supply and demand can be nearly informationally indistinguish-
able (Gentine et  al.,  2007; McColl & Tang,  2023; Seneviratne 
et  al.,  2010). Because of this, EF is commonly used as both a 
metric of water availability and of land surface drying (Dirmeyer 
et  al.,  2000; Dong et  al.,  2022; Feldman et  al.,  2022). We will 

explore the local temporal dynamics of GPP and EF using dynam-
ical systems models—the simplest empirical representation of a 
bi-directional feedback system. We will specifically evaluate the 
dominant timescales of sub-annual water/carbon interactions in 
these ecosystems.

1.1  |  Motivation

Before investigating the temporal dynamics of water and carbon in-
teractions, we first examine the spatial mean patterns. Due to the 
high density of observational data, we will look across the bioclimatic 
gradients of the Contiguous United States (ConUS). Figure  1a,c,d 
shows the distribution of mean June–August (JJAS) GPP versus EF 
across ConUS from multiple data sets. Figure 1a shows GPP from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP 
product (MOD17A2) and EF calculated from meteorological varia-
bles using the “evapotranspiration based on equilibrated relative hu-
midity” (ETRHEQ) method at 1798 weather stations across ConUS 
(data from Short Gianotti et al. (2019), and see methods). Because 
MODIS GPP is a modeled product—in particular, one which makes 
assumptions about the water cycle and water use efficiency—it is 
difficult to be certain that the relationship in Figure 1a is not im-
posed algorithmically. For comparison at the same sites, we show 
mean solar-induced fluorescence (SIF) data from the GOME-2 satel-
lite versus station-derived EF in Figure 1b. Figure 1c shows mean 
JJAS GPP vs. EF from available ConUS eddy covariance flux towers, 
and 1d shows GPP vs. EF from the FluxCom machine-learning prod-
uct trained on tower data and driven by meteorological and satellite 
observations. In all panels, we see a convex relationship between 
the photosynthetic metric on the y-axis and the mean EF across 
sites. The positive correlation is not surprising—locations with more 
available water can support more vegetation and will have higher 
evaporative fractions.

This study will tease apart the dynamic relationships between 
GPP and EF that lead to these averaged mean values. The questions 
we seek to answer here are (1) what are the dominant timescales of 
landscape dynamics coupling the water and carbon cycles, and (2) 
how are the water and carbon cycles linked on each of the times-
cales? In answering these questions, we hope to also explain how 
these patterns in the GPP-EF space arise.

2  |  METHODS

To investigate the coupled water and carbon cycles, we focus pri-
marily on two variables:

1.	 Gross primary productivity is the aggregate rate of carbon 
uptake from the atmosphere by landscape ecosystems. We 
use GPP measurements from multiple sources: eddy covariance 
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towers in the publicly available FLUXNET 2015 (Pastorello 
et  al.,  2020) and AmeriFlux (BASE and FLUXNET) datasets 
(Chu et al., 2023; Pastorello et al., 2020), satellite retrievals from 
the Moderate Resolution Imaging Spectroradiometer (Running 
et al., 2015), and estimates from the FluxCom machine-learning 
data set driven by eddy covariance and meteorological data 
(Jung et al., 2019; Tramontana et al., 2016). See Supplementary 
Table  S2 for citations to individual eddy covariance datasets. 
We additionally use temporally averaged satellite-based SIF 
data from the GOME-2 instrument (Joiner et  al.,  2013) as a 
model-free proxy of satellite GPP.

2.	 Evaporative fraction (EF) is the fraction of turbulent energy flux at 
the land surface that goes to evaporating water:

where �E is latent heat flux and H is sensible heat flux. EF is 
broadly monotonic with other water availability metrics (Haghighi 
et al., 2018; Short Gianotti et al., 2019) and normalizes latent heat 
flux to reduce confounding effects of surface energy budget terms—
particularly the latitudinal gradient of mean incoming radiation, 
changing radiation conditions after rainfall, and mean temperatures.

(1)EF =
�E

�E + H

F I G U R E  1 Relationship of time-averaged carbon and water variables across sites (biogeography). (a) Gross primary productivity (GPP) 
versus evaporative fraction (EF) at 1798 locations in the Contiguous United States (ConUS) (June–September). GPP estimated from MODIS 
sensor, and EF estimated from surface meteorological data using the ETRHEQ method (Rigden & Salvucci, 2015). The red line shows 
empirical curve fit and 99% confidence interval. (b) Same as (a) but using solar-induced fluorescence (SIF) from GOME-2 in place of MODIS 
GPP. At the large spatial scale, SIF covaries strongly with absorbed photosynthetically active radiation (APAR) as a photosynthetic proxy. 
(c) Same as (a), but with observations from ConUS eddy covariance flux towers. (d) Same as (a), but using output from the FLUXCOM. Both 
figures show a positively covarying, convex relationship across sites/bioclimate variability.
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2.1  |  Spatial and temporal focus

All analyses are performed over the Contiguous 48 United States 
(ConUS) where the coverage densities of flux tower and weather 
stations are high.

For daily dynamics, we specifically look at interstorm periods 
(“drydowns”), during which there is no precipitation. Landscape 
state variables may have reliable state-dependent dynamics, but it 
is unlikely that the magnitudes and timings of exogenous precipita-
tion events can be represented without full modeling of atmospheric 
circulation.

Daily data values are for the warm season with responsive veg-
etation (June 1–September 30) for all years used in each analysis.

Temporally averaged values for all variables are the average of 
daily values from June 1–September 30 for all years. Temporally av-
eraged EF values are the ratio of the averaged numerator divided by 
the averaged denominator.

2.2  |  Gridding the Drydowns in the GPP-EF space

Daily values of GPP, EF, and their first differences are used to fit lin-
ear dynamical system models to FLUXNET and FluxCom as shown in 
Figures 2–4 (see “Linear Dynamical Systems Model” section below). 
These models represent the daily dynamics (dEF/dt and dGPP/dt) 
as functions of the EF and GPP state variables. Because the ends of 
long drydowns tend to have a minimal dynamic range in GPP or EF, 
but with potentially many days of similar data, there is a tendency to 
oversample these drydown tails. To avoid associated biases (namely 
fitting primarily to the driest conditions, particularly in arid regions), 
we fit the dynamical system models to a gridded version of the daily 
data and first differences (see Figure 2). Gridded GPP and EF values 
are spaced evenly from zero to the maximum value observed at a 
site during all drydowns on a 17 × 17 grid (17 chosen as a subjective 
qualitative optimization, maximizing the number of observed grid-
ded points with relatively few unobserved “holes” in the data range). 
For each of the gridded (EF, GPP) pairs, the first differences (tempo-
ral derivatives) are gridded using 2D natural neighbor interpolation. 
Grid boxes with no observations are not included. Examples of these 
gridded flow fields are shown in Figure 2 (“Gridded Flows”), and the 
linear models are fit to the gridded EF, GPP, dEF/dt, and dGPP/dt 
values.

2.3  |  Joint density contours

The joint density contours shown in Figure 2 for specific drydown 
days are determined using all daily values 1, 3, 5, and 7 days after 
a precipitation event. To calculate the median contour (containing 
50% of data) for Day 3, for example: (1) All GPP-EF pairs of the 
third day of all drydowns are selected. (2) A joint (2D) kernel den-
sity is fit to these pairs. (3) GPP-EF contours are numerically esti-
mated at 250 evenly spaced density levels from 0 to the maximum 

density. (4) The cumulative joint density is calculated numerically 
using the contour areas and level spacing. The smallest contour 
density is represented by a vertical cylindrical projection of the 
contour to the GPP-EF plane. The second smallest contour is a 
similar cylindrical projection, plus the volume of the smallest con-
tour's layer, etc. (5) The “median contour” is that at which the cu-
mulative joint density (volume) equals 0.5. The set of joint density 
contours shows the general progression of GPP and EF in the days 
following rain events.

2.4  |  MODIS GPP

GPP from the MODIS MOD17A2 product, version 6 (Running 
et  al.,  2015), is used only in Figure  1a as averaged JJAS (June–
September) values in comparison with contemporaneous EF values 
from USHCN/ETRHEQ (which is available only for Years 2015–2016), 
and are taken from Short Gianotti et  al.  (2019). 500 m resolution 
8-day composites are selected as the pixel containing the USHCN 
weather station. GPP values are averaged locally for all dates.

2.5  |  GOME-2 SIF

Solar-induced fluorescence data are from the GOME-2 instrument 
on the MetOp-A satellite (Joiner et al., 2013). The data are nominally 
measured at 740 nm with a spectral resolution of 0.5 nm and a spatial 
resolution of 0.5°. All SIF values (including negative values) are aver-
aged for JJAS days for a single mean value per pixel. We use the SIF 
data for local contemporaneous comparison with weather station-
based EF values (USHCN/ETRHEQ, see below), and pair the weather 
station with the overlapping native pixel.

While chlorophyll fluorescence yields are often negatively cor-
related with carbon assimilation on the scale of a single leaf over 
seconds (e.g., sun flecks), fluorescence is positively correlated with 
absorbed photosynthetically active radiation (APAR) when aggre-
gated in space and/or time (Jonard et al., 2020). SIF can thus be used 
an independent proxy for GPP at aggregated scales, with the benefit 
of no inherent assumptions about vegetation or water state (unlike 
satellite-derived GPP). SIF data are used only for Figure 1b.

2.6  |  Flux towers

To show observed GPP-EF relationships and our methodological ap-
proach in Figure 2, we use daily GPP, latent heat fluxes, sensible heat 
fluxes, precipitation, and soil moisture data from three flux towers 
in the FLUXNET 2015 FULLSET data set (Pastorello et  al., 2020): 
Willow Creek (US-WCr, JJAS 1999–2014) in northern Wisconsin 
(Cook et  al.,  2004), Metolius Young Pine Burn (US-Me6, JJAS 
2010–2014) in western Oregon (Ruehr et al., 2012), and Santa Rita 
Grassland (US-SRG, JJAS 2008–2014) in southern Arizona (Scott 
et al., 2015).
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The GPP variable used for each site is GPP_DT_VUT_REF. The la-
tent heat and sensible flux variables for each site are LE_F_MDS and 
H_F_MDS which are gap-filled using the MDS method. Soil moisture 
is SWC_F_MDS_1, using the uppermost soil layer. The precipitation 
variable is P_F, the consolidated site, and ERA precipitation variable. 
These data are used only in Figure 2.

Drydowns are determined as three or more consecutive days 
with zero reported precipitation.

Additionally, we use GPP (GPP_DT_VUT_REF) and EF (LE_F_
MDS, H_F_MDS) data from all available ConUS sites for the 
long-term mean data shown in Figure  1c. Only sites with more 
than 8 months of JJAS data are shown, and sites classified as ev-
ergreen needle leaf, wetland, permanent snow or ice, barren, or 
urban are excluded. We use all sites with data available under the 
Creative Commons CC-BY-4.0 Data License, all of which are sum-
marized and referenced in Table S2. Sites available in more than 

one dataset are selected to use the dataset with the longest data 
record. Data are drawn from the FLUXNET 2015 data collection 
(Pastorello et  al., 2020), the Ameriflux FLUXNET data collection 
(Pastorello et al., 2020), and the Ameriflux BASE data collection 
(Chu et al., 2023).

2.7  |  FluxCom

Fluxes of surface sensible heat flux, latent heat flux, and GPP are 
used from the FluxCom machine-learning archive trained on eddy 
covariance tower data. We use all daily JJAS data from 1980 to 
2013 at 0.5° resolution over ConUS. Carbon fluxes are from the 
CarbonFluxes version 1 dataset, “FluxCom (RS+METEO) Global 
Land Carbon Fluxes using CRUNCEP climate data” using the random 
forest method and CRUNCEP version 6 forcing (Jung, 2016; Jung 

F I G U R E  2 Daily-scale dynamics at three example flux towers across the humid to semi-arid axis. (a) Willow Creek (US-Wcr, DBF) in 
Wisconsin. (b) Metolius Young Pine Burn (US-Me6, ENF) in Oregon. (c) Santa Rita Grassland (US-SRG, GRA) in Arizona. Joint density is for 
all local daily JJAS data (including rainy days), all available years. Points in “All Drydowns” plots (first or left-most column) show daily (no rain) 
values colored by observed volumetric soil moisture θ at the tower site, and lines connect multi-day drydowns. Arrows in “Empirical Flows” 
plots (second column) show daily drydown progression. “Gridded Flows” plots (middle column) show gridded versions of the Empirical Flows. 
Arrows in “System Evolution” plots (last column) show fitted flowlines, red dashed lines show eigenvectors, colored contours show 90% 
probability density for GPP-EF pairs 1 day after rain (blue), 3 days (green), 5 days (orange) and 7 days (red). The “System Evolution” column 
shows that the dynamics is composed of a fast move to a sloped GPP-EF axis. The state of the system (typified by the progression of color 
contours) drifts over time along flowlines and eventually becomes the most probable state which is equivalent to the “All Drydowns” joint 
density (first column).
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et al., 2020; Tramontana et al., 2016). GPP and respiration partition-
ing follow the method of Reichstein et al. (2012).

Latent and sensible heat fluxes are from the version 1 data-
set, “FluxCom Global Land Energy Fluxes” (Jung,  2018; Jung 
et  al.,  2019; Tramontana et  al.,  2016). The turbulent fluxes are 
based on remotely sensed and meteorological data streams. The 
ensemble values are derived using all energy budget closure 
methods (Bowen ratio, residual method, and uncorrected) and 
all machine-learning methods (artificial neural network, multi-
adaptive regression splines, and random forest) and are driven by 
the CRUNCEP version 6 climate data.

2.8  |  ETRHEQ turbulent fluxes

Previous research has established and investigated an observed 
land—atmosphere coupling pattern—the minimization of the vari-
ance of the vertical relative humidity profile at the daily scale—
which can be used to estimate surface conductances of moisture, 
sensible heat, and momentum (McColl & Rigden, 2020; Rigden & 
Salvucci,  2015; Salvucci & Gentine,  2013). These conductances 
can then be used to derive turbulent fluxes of sensible and latent 
heat from data available at surface meteorological stations, and fi-
nally EF through Equation 1. Turbulent fluxes have been validated 
against Flux Tower observations (Rigden & Salvucci, 2015, 2017). 
Using this method, EF was estimated previously at 1798 ConUS 
surface weather stations (Smith et  al.,  2011) in Short Gianotti 
et al. (2019). Daily turbulent flux data available from Short Gianotti 
et al. (2019), which span only the Years 2015–2016, are used here 
in Figure 1a,b. This temporal span determines the range MODIS 
GPP and GOME2 SIF data used as well. Because of the short tem-
poral span of these EF data, we caution against using parameter-
ized curve fits in Figure 1a,b alone for extrapolation. Fit curves are 
shown for qualitative comparison with independent data sources 
plotted in Figure 1c,d.

2.9  |  CMIP6 data

To determine baseline coupling of the water and carbon cycles 
in models, we use data from the Coupled Model Intercomparison 
Project. We use the Pre-Industrial Control Run Earth System 
Model Experiment (esm-piControl, Figure 5). We additionally use 
data from the Historical Earth System Model Experiment (esm-
hist) in Figure S3 to show the impact of land use harmonization 
on GPP-EF relationships. Data references for all CMIP6 data are 
in Table S1.

The esm-piControl experiment is designed to represent the 
period prior to the onset of large-scale industrialization (reference 
Year 1850), using a spin-up to allow the climate to come into balance 
with forcing (Eyring et  al., 2016). Models all have dynamic carbon 
budgets, accounting for fluxes between the atmosphere, ocean, and 
biosphere.

For all experiments, model output is at the monthly scale. In 
Figure 5, pixel mean GPP is the mean of all monthly JJAS values. 
Pixel mean EF is the ratio of the mean of all monthly JJAS latent 
heat flux values to the mean of all JJAS latent plus sensible heat flux 
values.

2.10  |  Data limitations

MODIS GPP is a modeled product based on assumptions about 
water use and vegetation class. This, of course, can lead to biases 
and artifacts. That said, MODIS GPP is entirely independent of the 
ETRHEQ fluxes, albeit with potential spatial representativeness is-
sues between the two. Individual SIF retrievals from space have 
very low signal-to-noise ratios, but by aggregating in time, errors are 
greatly reduced (see Short Gianotti et al. (2019) for spatio-temporal 
relationships with water). The strong similarities between the two 
independent satellite products (MODIS GPP, GOME-2 SIF), and their 
further similarities with the longer duration Flux Tower and FluxCom 
data in Figure 1c,d in their relationships with EF, is evidence that the 
carbon–water relationship in Figure 1 is likely physical rather than 
artificial.

Flux towers are not common enough to represent the range of 
biomes and climates, even in the United States, but are benchmark 
references for local surface fluxes. FluxCom is based on the complex 
covariances of variables observed at flux towers, and relationships 
within the data can always potentially be driven by hard-wired mis-
specification errors.

Any benchmark for physical models would ideally be deter-
mined using observations. The machine-learning algorithms used 
in estimating GPP and EF, while driven by meteorological and 
remotely sensed observations are of course statistical models 
themselves, which leaves opportunity for errors in process rep-
resentation, just as physical models do. Despite this, the FluxCom 
data does not impose physical parameterizations (aside from en-
ergy balance corrections) that physical models a priori assume, 
which provides an independent estimation of daily- and seasonal-
scale processes for comparison with other independent data sets. 
Additionally, the FluxCom data are trained on daily observations 
at eddy covariance sites specifically to optimize the representa-
tion of complex, non-linear responses of surface fluxes to meteo-
rological forcing. These dynamics are then driven by observations, 
which we expect to empirically encode some of the physical pro-
cesses captured by remote sensing (MODIS), flux towers, and me-
teorological data (CRUNCEP), including their biometeorological 
co-evolution at sub-seasonal scales. We suspect that the FluxCom 
data are the best available benchmarking tool for studying the co-
evolution of land surface fluxes at continental scale without im-
posing that co-evolution structure physically. We also suspect that 
there will be errors in the extrapolation of statistical relationships 
to sites which are poorly represented by the FLUXNET training 
data, and so the parameters estimated from this data have high, 
and difficult to estimate uncertainties.
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2.11  |  Interstorm Drydowns

Drydowns for the fluxes associated with the FluxCom data are de-
termined using the Climate Prediction Center's Unified Gauge-Based 
Analysis of Daily Precipitation over ConUS (CPCU) gridded precipi-
tation data interpolated from daily station data (Chen et al., 2008). 
Individual drydowns are defined as three or more consecutive days 
with no precipitation reported. For compatibility with FluxCom 
data, all daily fluxes from the lower resolution (0.5°) FluxCom grid 
are matched with precipitation time series on the 0.25° precipita-
tion CPCU grid (un-interpolated down-scaling). Fluxes occurring 
during identified drydowns from any CPCU pixel are then pooled 
and assigned back to the coarser-scale FluxCom grid so that GPP-EF 
co-evolutions during drydowns are represented according to the 
fraction of the pixel experiencing a drydown. All JJAS drydowns 
from 1980 to 2013 are included.

2.12  |  Linear dynamical system model

We use a two-dimensional linear time-invariant (LTI) dynamical sys-
tems model for the analysis of first-order co-evolution between GPP 
and EF:

where the parameters EF⋆ and GPP⋆ determine the fixed points of the 
system and a1–a4 are regression coefficients. This model treats the dy-
namics of GPP and EF as state-dependent so that changes in each vari-
able in time are a function of the current GPP and EF states. Positive 
values of a3, for example, suggest that higher EF values at a site are 
generally followed by an increase in GPP on the following day. This is 
the simplest state-dependent model of a coupled two-variable system, 
but can still yield somewhat complex distributions of the variables in 
time. We specifically apply this model only during drydown periods 
between rain events, as the dynamics of precipitation are radically dif-
ferent from those of the interstorm periods (both in terms of radiation 
and humidity gradients). Systems such as these are much simpler than 
non-linear dynamical models (such as the common Lotka-Volterra pop-
ulation model) or time-varying systems (where the a1–a4 parameters 
would change in time), and thus have a rich, well-established theoreti-
cal base. The system has two eigenvectors in the GPP-EF space, each 
with an associated eigenvalue (timescale). The eigenvectors cross at 
the point 

(

EF
⋆
, GPP

⋆
)

.
We fit the model at daily timestep to FLUXNET and FluxCom 

data, using only data within landscape drydowns between rain 
events of 3 days or more. These data and their first differences 
are gridded in the GPP-EF space (see above) and then used to (2a)

dEF

dt
=a1

(

EF−EF
⋆
)

+a2

(

GPP−GPP
⋆
)

(2b)dGPP

dt
=a3

(

EF−EF
⋆
)

+a4

(

GPP−GPP
⋆
)

F I G U R E  3 Empirical model parameters from daily JJAS FluxCom estimates. Parameters for the linear dynamical system model: 
dEF∕dt = a1

(

EF − EF
⋆
)

+ a2

(

GPP − GPP
⋆
)

 and dGPP∕dt = a3
(

EF − EF
⋆
)

+ a4
(

GPP − GPP
⋆
)

 (e.g., Equation 2). The parameters are estimated 
from daily gross primary productivity (GPP) and evaporative fraction (EF) values between rain events, as in Figure 2. The EF → EF notation 
highlights that (e.g.) parameter a1 captures the feedbacks from the current EF value to the following day's EF value. Negative values suggest 
a negative feedback toward the intersection of the eigenvectors at 

(

EF
⋆
, GPP

⋆
)

. Positive values suggest a positive feedback—in this case, 
high EF values leading to EF increases for the next day and low EF values leading to further decreases in time (the latter being the typical 
drydown progression).
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8 of 18  |     SHORT GIANOTTI et al.

calculate maximum likelihood estimators of the system parame-
ters. In each grid box, the EF, GPP, dEF/dt, and dGPP/dt values are 
calculated. Taken over all grid boxes, these data are used to esti-
mate the parameters a1, a2, a3, a4, EF

⋆, GPP⋆ at an individual site. 
Although these equations are linear in EF and GPP, they are not 
linear in the parameter space, so we use an unconstrained non-
linear optimization to minimize the squared (univariate Gaussian) 
errors of the dEF/dt and dGPP/dt values given the gridded EF and 
GPP values. This approach is similar to a weighted regression of 
the daily data with area-weighting—larger weights for individual 
observations in less-sampled areas and smaller weights in highly 
sampled areas.

Together, the system parameters (or equivalently, the eigenval-
ues and eigenvectors of 

⎡

⎢

⎢

⎣

a1 a2

a3 a4

⎤

⎥

⎥

⎦

), determine fast and slow system evo-
lution. Combined with the system shocks (i.e., precipitation events), 
the system determination defines a joint distribution of EF and GPP 
(Brubaker & Entekhabi, 1996).

Eigenvector slopes can be written as

for the fast or slow eigenvectors associated with eigenvalue �.

While linear models of GPP-EF dynamics can represent fairly 
complex behaviors (e.g., Figure 2), they are by construct simplistic. 
We select these models not because we believe dynamics are in-
herently linear, but because they allow us to summarize some basic 
properties of local water/carbon interactions—dominant timescales 
and slopes of interaction.

3  |  RESULTS

3.1  |  How do sub-seasonal dynamics drive the 
mean state?

The daily co-evolution of GPP and EF is subject to water availability 
shocks via rainfall. To uncover how local physical processes drive 
temporal dynamics, we examine the observed evolution of GPP-EF 
values across time at eddy covariance towers (Figure 2). The local 
joint distributions of daily GPP and EF are shown for three locations, 
with stronger temporal covariance shown in more water-limited, 
arid locations. The evolution of fluxes at a daily scale is shown dur-
ing all drydowns after precipitation events, demonstrating a pro-
gression generally toward the higher density portions of the joint 

(3)
dGPP

dEF
=
�−a1

a2

=
a3

�−a4

F I G U R E  4 Fast and slow temporal dynamics of sub-seasonal GPP-EF co-evolution. (a) Timescale of fast dynamics using daily FluxCom 
JJAS GPP and EF and LTI model (Equation 1) after rain events; timescales are uniformly on the order of 1–8 days. (b) dGPP/dEF slope for 
fast dynamics during drydowns, negative (increasing Gross primary productivity [GPP] and decreasing evaporative fraction [EF]) across 
the Contiguous United States (ConUS). (c) Fast eigenvectors for every pixel in (a, b), with range equal to local quantiles 0.05–0.95 for all 
JJAS daily data. Slopes (lower panel) become more negative with increasing mean EF. (d–f) Same as (a–c) but for slow dynamics. Timescales 
(d) typically on the order of 30 days, timescale signs imply feedback class and separate water/energy limitation. Slopes are positive across 
ConUS and increase with mean EF. Light line in (f) shows mean values for all pixel eigenvectors in 25 uniform EF bins.
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    |  9 of 18SHORT GIANOTTI et al.

distributions, and a longer-term progression toward arid states (low 
EF and low GPP), particularly for the more arid locations.

To empirically evaluate the landscape response after a precipi-
tation shock, we fit linear dynamical system models to gridded val-
ues of the daily-scale co-evolution of GPP and EF (Figure 2 “System 
Evolution”). These models are the simplest empirical fit of the flow 
field for the GPP-EF space.

The empirical dynamics in Figure  2 are represented by fast 
and slow eigenvectors, which establish the primary axes of within-
drydown system evolution. The fast dynamics drive the GPP-EF 
state over the course of days toward the slow eigenvectors, which 
are also the areas of higher joint density. Within drydowns after rain-
fall, EF decreases, and GPP increases (negative covariation) until the 
water becomes limiting; then GPP falls in tandem with EF (Feldman 
et al., 2018, 2019; Feldman, Short Gianotti, et al., 2021). The land-
scape then follows the slow eigendirection on weekly-to-monthly 
scales, which determines the primary axis of water-carbon temporal 
coupling (now positive covariation), most dramatically in areas with 
less frequent rain. Note that the dGPP/dEF slope of the slow eigen-
vector is steepest in the wettest location and shallowest in the driest 
location. This holds broadly across ConUS flux towers (median fast/
slow timescales: 2.4 days / 21.1 days) and corresponds to the geo-
graphical convexity of Figure 1.

3.2  |  Fitting to FluxCom data

We perform the same analyses shown in Figure 2 to each pixel 
in the spatially gridded FluxCom dataset to determine model 

parameters for each location in ConUS. Figure 3 shows the esti-
mated parameters for the model in Equation 2. Direct feedbacks 
from EF to itself (a1) are always negative because the landscape 
is always drying between rain events. GPP feedbacks to EF (a2) 
are positive as both photosynthetic upregulation and higher bio-
mass correlate with higher transpiration. EF feedbacks to GPP 
(a3) are positive due to both stomatal and growth responses to 
water availability (Claeys & Inzé, 2013). When GPP feedbacks to 
itself (a4) are negative, this implies no water buffer for photo-
synthetic upregulation—the dominant stable state in this case is 
desiccation.

Figure 4a,b shows the timescales of the fast dynamics and the 
slopes of the corresponding eigenvectors from FluxCom data at 
each grid point. As with flux towers, the fast eigenvectors (median 
ConUS timescale 3.8 days) have negative slopes as EF decreases 
and GPP increases in the days immediately following rain. This 
demonstrates one basic hydrological-ecophysiological coupling 
mechanism: between storms, plants take up water and dry soils, 
allowing for rapid (e.g., stomatal, hormonal, growth acclimation, 
and turgor/osmotic adjustment) photosynthetic upregulation 
while water is sufficiently abundant (Claeys & Inzé, 2013; Feldman 
et al., 2018; Feldman, Short Gianotti, et al., 2021). This is a phys-
iological response to pulses of water availability. A slope value of 
−1 gC/(m

2 ∙ day) can be directly interpreted as, for example, an 
increase in GPP of 0.1 gC/(m

2∙day) as EF decreases by 0.1 in the 
first days after rainfall. Steeper slopes in irrigated regions suggest 
either highly water-sensitive vegetation or that changes in EF are 
due to exogenous covariates (e.g., harvest and accompanying end 
of irrigation).

F I G U R E  5 Sample of Earth System 
Models from the CMIP6 esm-piControl 
experiment show a range of spatial 
covariance structures (biogeography), 
often misrepresenting the observed 
spatial relationship seen in Figures 1 
and 4. Results in Figure 5 implicate the 
coupled relationship between biomass 
or leaf area and water availability metric 
evaporative fraction (EF).
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3.3  |  Local slow temporal dynamics are tangent 
to the geographic distribution

Slow dynamics (median ConUS timescale 33 days, Figure 4d,e) rep-
resent the sub-seasonal co-evolution of water and carbon fluxes, 
all with positive dGPP/dEF slopes. These positive slopes imply that 
the dominant local co-evolution of water and carbon fluxes is posi-
tively correlated and drives the positive covariance of the local joint 
GPP-EF densities (e.g. Figure 2 “Joint Density”). This is the long-term 
growth response and mode for EF-GPP coupling. Negative eigen-
values imply strong water limitation as for parameter a4 in Figure 3.

The slow dGPP/dEF are more positive in more humid regions, 
and in particular increase with increasing climatological mean GPP 
and mean EF. This increasing local dGPP/dEF slope across geogra-
phy—effectively an increasing normalized landscape WUE—implies 
that landscapes are more sensitive to changes in water availability 
in more humid regions. This is counter to the plant-level intuition 
of higher sensitivities in more arid conditions, but implicates total 
photosynthetic capacity (e.g., biomass and leaf area—positively cor-
related with water availability and transpiration) as the dominant 
driver of this coupling. Figure 4e is quite similar to maps of mean 
growing season leaf area index or vegetation density.

We note that the individual eigenvectors in Figure 4f are oriented 
along their own geographic distribution (convex curve). While local 
GPP-EF dynamics at monthly timescales need not be linear by any 
specific theory, the slow slopes are a best-linear approximation—ef-
fectively tangents to a convex spatial curve.

These paired emergent relationships in time and space suggest that 
the temporal dynamics of ecosystems (rather than a static biogeogra-
phy) drive the mean-state water/carbon coupling seen in Figure 1 (see 
Figure S1 for direct comparison). It is known that phenology and sub-
seasonal processes are critical in determining aggregate GPP (Pappas 
et al., 2017; Piao, Wang, Park, et al., 2020). Figure 4 suggests that sub-
seasonal processes also drive the water–carbon feedbacks, in particu-
lar the landscape WUE represented by the slope of the curve.

Quantitatively, using the long-term mean curves of Figure 1 to 
estimate the slopes of the slow eigenvectors for daily FluxCom data 
in Figure 4f tend to slightly underestimate the slope (when evaluated 
across all FluxCom pixels, see Figure S2). Differences between using 
the curves from Figure 1a,c, or d are minimal.

3.4  |  Earth system model performance

The spatial patterns depicted in Figure 1 can be thought of as space-
for-time representations of GPP and EF dynamics at much longer 
timescales. To whatever extent diverse ecosystems couple GPP and 
EF along similar patterns, the mean states represent snapshots from 
a dynamic equilibrium of successionary, adaptive, growth-mortality, 
and climate coordination timescales. Mean states from networks of 
eddy covariance tower sites (not shown) show similar convex pat-
terns to Figure 1, which lends support to the robustness of the emer-
gent behavior.

For comparison with our observation-driven relationships, we 
show a sample of the same spatial relationship from ESMs from the 
CMIP6 esm-piControl experiment with no imposed land harmoniza-
tion (Figure 5), which show diverse and diverging GPP/EF relation-
ships (see Figure S3 for land use harmonization comparison). These 
relationships are not parameterized in models, but instead emerge 
from complex mechanistic representation of the coupled water and 
carbon cycles. Different models represent and include different 
physiological and ecological disturbance processes, but we would 
expect the spatial distribution of coupled water and carbon to show 
similar patterns to observations. Differences between the geogra-
phy of modeled and observed GPP-EF imply that ecosystem water–
carbon feedbacks may not be properly represented in some models, 
but the explanation for these mismatches is not yet mechanistically 
clear. Candidate mechanisms include growth and mortality dynamics 
(Anderegg et al., 2015), water/energy limitations on biomass produc-
tion (Schwalm et  al., 2017), differences in growth-  and photosyn-
thetic sensitivities to water state (Claeys & Inzé, 2013; Manandhar 
et al., 2017; Potkay & Feng, 2023), and temporal alignment of grow-
ing seasons with water availability and atmospheric water demand.

We highlight the GFDL-ESM4 model, which best captures the convex 
spatial pattern across ConUS in Figure 5. GFDL-ESM4 is one of only two 
ESMs (along with EC-Earth3) in the CMIP6 archive to represent dynamic 
ecosystem demography (Shevliakova et al., 2024). The other three mod-
els in Figure 5 do not represent sub-annual changes in vegetation type, 
nor do they represent sub-seasonal feedbacks from terrestrial water to 
daily plant dynamics. By comparison, the land surface model in GFDL-
ESM4 represents multiple cohorts of vegetation per grid cell, each of 
which compete for water and energy resources at model timestep; and 
each cohort's leaf (LAI), wood (height), root, and sapwood carbon pools 
are updated daily in response to land surface conditions. This affects 
downstream vegetation cover fraction, albedo, and surface roughness, 
and allows vegetation dynamics to feed forward into the daily dynamics 
of the atmospheric boundary layer, including the water and energy cy-
cles (Shevliakova et al., 2024). This does not conclusively prove that the 
coupling of water and carbon dynamics at the (ca. 3-day and ca. monthly) 
timescales we present here is the only driving force in the patterns of 
Figures 1, 5. It does however strongly suggest that inclusion of daily-
to-monthly-scale feedbacks may be enough to push ESMs toward the 
observed relationships. GFDL-ESM4 does not have coupled nitrogen dy-
namics interacting with the terrestrial carbon model, suggesting that—at 
least over ConUS—water/carbon interactions (such as those in Figure 4f) 
may be the dominant drivers of the mean-state patterns in Figure 1.

A more complete interrogation of the role of dynamics versus 
static tuning parameters in ESMs would require analyses at daily 
output timescales, as opposed to the aggregated monthly values 
used in Figure 5.

4  |  DISCUSSION

In both tower-based and FluxCom-based analyses, the coupling 
between water availability and carbon uptake is essentially always 
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negative (GPP increases as EF decreases) on daily timescales. The 
opposite is true at monthly timescales; GPP and EF are always posi-
tively coupled, and both decrease monotonically after rain. Broadly, 
we find that water–carbon dynamics change signs between short 
and long timescales. The difference in sign for the two sub-annual 
dynamics can be formalized in the eigenvector slopes in Figure 2, 
and Figure  4b,e. Fast processes with photosynthetic upregulation 
dominate on timescales of ca. 1–5 days; slow (ca. monthly) processes 
dominate beyond this, as landscape productivity rises and falls with 
available water. This behavior—switching from immediate negative 
correlation to positive correlation—has also previously been ob-
served in entirely independent datasets of landscape vegetation 
water content and soil moisture (Feldman et al., 2018).

The general emergent convex patterns seen in Figure 1 can be 
understood from the slow dynamics as follows:

1.	 The long-term mean values of GPP and EF are driven by slow 
(monthly scale) dynamics. The slow eigenvectors represent the 
dominant GPP-EF conditions for ecosystems. The simple, em-
pirical models quantify the dynamics of ecosystem behavior, 
namely the dynamic mean-state and responsiveness of the 
system to perturbations from that dynamic equilibrium (De 
Frenne et  al.,  2021; Shekhar et  al.,  2023). Following precipi-
tation, ecosystems move rapidly (ca. 1–5 days) toward the slow 
eigenvector, and then, the variables co-evolve slowly in the 
slow eigenvalue direction (e.g., colored contours in Figure  2) 
with dGPP/dEF rates given by the slopes in Figure  4e. This 
pushes ecosystems' joint GPP-EF distributions toward the slow 
eigenvector, which serves as their main axes of dynamic equi-
librium. The modes of ecosystem GPP-EF distributions should 
lie along or near their slow eigenvectors.

2.	 Wetter locations have steeper dGPP/dEF slopes. Somewhat coun-
terintuitively, equivalent changes in EF correspond to larger GPP 
changes in humid ecosystems than in more arid ecosystems. 
While EF is also non-linearly related to more direct water supply 
metrics—such as volumetric soil moisture or soil saturation (Short 
Gianotti et  al.,  2019)—previous research suggests that evapo-
rative metrics may be in some ways ideal for explaining water/
carbon coupling relationships (Biederman et  al.,  2016; Franklin 
et al., 2020; Huxman et al., 2004; Knapp et al., 2017). Additionally, 
GPP itself is non-linearly related to direct soil water supply (Short 
Gianotti et al., 2019), and should vary to some degree with energy 
availability, which EF normalizes for.

3.	 Slow dGPP/dEF slopes are controlled by biomass. While we might 
think of arid regions having more sensitivity to water availability 
metrics than humid regions, the larger slopes in Figure 4 and the 
convexity of the spatial and temporal GPP-EF curves are more 
intuitive if we bear in mind that GPP is proportional to vegetation 
metrics such as above-ground biomass, vegetation cover fraction, 
or leaf area (LAI), simply through total landscape chlorophyll and 
APAR. A shock to the water availability in sparse desert may have 
large per-plant relative impacts, but will still lead to much smaller 
aggregate GPP change than a similar shock to a highly productive 

forest. Still, it is not at all obvious that biomass state variables 
themselves are sufficiently sensitive to water availability so as to 
dominate the plant-level responses across plant functional types, 
photorespiratory pathways, and isohydricity (Claeys & Inzé, 2013; 
Manandhar et al., 2017; Pan et al., 2022; Schwalm et al., 2017). It 
does appear, however, that aggregate biomass metrics dominate 
the water/carbon coupling relationship at landscape scale (e.g., 
convex shapes of Figures 1, 4f, increasing slope with water avail-
ability in Figures 2, 4e,f. See also Figure S4).

4.	 Steeper dGPP/dEF dynamic equilibria on monthly scales lead to 
the convex relationship across sites. The effect of steeper dGPP/
dEF relationships (slow eigenvector slopes, dominant axis of 
dynamic equilibrium) is that the mean values of GPP and EF fall 
along a convex, non-linear curve in Figure 1. The coherence of 
this shape across biomes and climate is surprising. The general-
ity of this shape (and the co-alignment of the slow eigenvectors 
to form a similarly convex, coherent tangent bundle) suggests 
some near-equivalence of dynamics across vegetation biodiver-
sity. Again, this is counterintuitive based on decades of study 
on the large range of plant sensitivities to water and strate-
gies of water use, both across and within species (D'Orangeville 
et al., 2018; Lavergne et al., 2019; Niinemets et al., 2015; Song 
et al., 2023).

The role of biomass in this coupling provides a likely explana-
tion, Laboratory experiments, and plant-scale optimality theories 
argue for increased plant water use efficiency in drier conditions 
pushing carbon–water correlation more toward negative; (Harrison 
et al., 2021; Katul et al., 2009; Lambers & Oliveira, 2019, pp. 60–64; 
Walker et  al., 2020). Much of this is driven by sub-hourly stoma-
tal responses and sub-daily photochemical regulation (Lambers 
& Oliveira,  2019; Schymanski et  al.,  2015). At the ecosystem 
scale, however, biomass increases with water availability (Franklin 
et  al.,  2020), along with the photosynthetic capacity of the land-
scape. This change in sign—akin to the changes in sign for dGPP/
dEF at different timescales—shows the way in which carbon–water 
“optimization” is scale-dependent (Kull, 2002; Niu et al., 2011). We 
suggest that leaf-scale optimality drives ecosystems quickly (e.g., 
Figure  4c) to the slow (positively correlated) dynamic equilibrium 
of the landscape (e.g., Figure 4f)—governed by monthly growth, se-
nescence, mortality, propagation, and disturbance response—which 
could be seen as its own landscape optimization of water and carbon 
(Anderegg et al., 2015; Richardson et al., 2013).

4.1  |  Across-sites time-mean, local slow 
dynamics, and space-for-time substitutions

The spatial patterns in Figure 1 are qualitatively similar to the tem-
poral patterns (across space) in Figure 4f. The curve traced out by 
the spatial ensemble of slow eigenvectors (Figure 4f) is an emergent 
behavior of the coupled water/carbon cycle dynamics. Individual 
slow eigenvectors look conspicuously like tangents to the spatial 
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pattern mapped out by the mean curve (Figure 4f) or the long-term 
mean values (Figure 1).

Although we do not have a theoretical model for a general (tem-
poral and across-sites) relationship to explain all of the dynamics in 
Figure 4c,f, we speculate that the EF-GPP state of these landscapes 
move toward that spatial mean curve relatively quickly (ca. days) 
after rain events, with EF drying and GPP increasing. As they ap-
proach the mean curve, they dry more slowly along it with positive 
slope (EF still drying, but GPP decreasing) until another precipitation 
event disturbs the state evolution again. A general model could be 
very useful if it has predictive power for landscape evolution during 
interstorm periods and would be even more so with theoretical 
explanation. This could, in particular, be helpful in estimating the 
short-to-medium-term effects of landscape disturbances. We pro-
pose that these results could help land managers to establish likely 
behaviors of landscapes in response to changes in water regime or 
disturbances in above-ground biomass.

We hypothesize that local temporal land surface dynamics are 
tangent to the mean curve in Figures  1 and 4f whenever space-
for-time substitutions are appropriate. This can only happen at the 
proper spatial and temporal scales. For example, on daily times-
cales all sites have dynamics somewhat orthogonal to that curve 
(Figure 4c). Similarly, sites recovering from major disturbance (e.g., 
deforestation) likely do not follow this coupling pattern because the 
water and carbon cycles become uncoupled until such point that re-
cruitment, succession, and adaptation processes bring the system 
back to a new dynamic equilibrium. Additionally, space-for-time sub-
stitutions and the effects of aggregation scale are complicated by 
the role of Jensen's inequality, which requires that any non-linear 
relation cannot be equivalent across different transformations (e.g., 
spatial or temporal averaging) of the underlying variables. A fascinat-
ing question arises, whether there is a transformation of the water/
carbon variables that is sufficiently linear to represent the dynamic 
equilibria across all time and spatial scales.

4.2  |  Observational benchmark for earth system 
model emergent behaviors

The ESM data shown in Figure 5 (JJAS pixel means over ConUS) 
are intended to be compared with both the observational data in 
Figure 1 and the emergent spatial pattern from local temporal dy-
namics shown in Figure 4f. While some models show a general re-
lationship between GPP and EF across space, the patterns shown 
are in some cases quite different from the convex shapes seen in 
Figures  1, 4. While some ESM experiments impose land use “har-
monization” (prescribed land use pathways) to simplify intermodal 
comparison, we would expect any models with directly coupled 
carbon and water cycles to display similar emergent coupling pat-
terns to observations. The fact that the models in Figure 5 do not all 
display these patterns suggests either mis-parameterization in the 
water and carbon cycles individually, or that fully coupled daily-to-
monthly-scale dynamics between plants and water (e.g., response of 

growth processes to water availability, transpiration dynamics, and 
magnitude of phenological variability) are necessary to get mean 
GPP and EF correct for the correct reasons.

Predictions of the global carbon and water budgets from Earth 
System Models in future climates—with different biodiversity, 
radiation, temperature, water availability, and carbon availabil-
ity regimes—hinge on getting these feedbacks right. The dynamic 
vegetation models in the recent generation of ESMs parameterize 
both physiological and ecosystem structural dynamics, but may 
not fully represent structural response to water and heat stress 
(Allen et  al.,  2015; Anderegg et  al.,  2015; Brodribb et  al.,  2020; 
Fatichi et al., 2014; Peñuelas et al., 2017; Tei et al., 2017; Trugman 
et al., 2018).

We propose using the general emergent spatial patterns seen in 
this study to benchmark model output, at least for ConUS, but also 
likely more broadly across the mid-latitudes. It is also possible to run 
similar empirical dynamical analyses on daily ESM output, but spa-
tial scaling effects—particularly Jensen's Inequality—would need to 
be dealt with carefully due to the non-linear relationships seen in 
Figures 1, 4 (Denny, 2017; Englund & Leonardsson, 2008).

4.3  |  Water limitation definition

The negative a4 values in Figure  3 and the negative eigenvalues 
in Figure  4 both seem to present a method for defining a kind of 
water limitation based on water–carbon coupling metrics (compare, 
e.g., with vegetation cover fraction in Figure  S4 and traditional 
definitions of 100th parallel water limitation divides in Seager, Lis, 
et al. (2018)). Exactly how to interpret this definition is unclear, as is 
whether these forms of water limitation map onto the concept that 
landscapes may move in and out of water limitation over time (Akbar 
et al., 2019; Seager, Feldman, et al., 2018). While there is evidence 
that this aridity divide can be largely explained by water metrics 
alone (Seager, Lis, et al., 2018), water–vegetation interactions surely 
mediate the sub-seasonal dynamics through plant–water mecha-
nisms, and thus mediate the long-term mean states and dynamics. 
Again, this is an area of ongoing and future research in the land sur-
face processes community (Akbar et al., 2018; Denissen et al., 2020; 
Feldman et al., 2019; Fu et al., 2022; Zhang et al., 2016).

4.4  |  Stomatal feedbacks muted at 
daily-averaged scale

Of the many coincident processes coupling the water and carbon cy-
cles, one specific feedback that we do not see emerge in these analy-
ses is the direct stomatal response on daily timescales. Specifically, 
one could expect that water availability promotes increases in 
stomatal conductance, increasing both carbon and water fluxes, 
leading to a positive GPP/EF correlation. Instead, we find that all 
estimated fast eigenvectors (Figure 4) have negative slopes, demon-
strating that EF and GPP are still negatively correlated at these fast 
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timescales. This suggests that leaf area and upregulation dynamics 
dominate stomatal dynamics in this relationship at landscape scale 
(supported by isotopic studies; see Guerrieri et  al., 2019; Mathias 
& Thomas, 2021), or that the impacts of stomatal response require 
observations at sub-daily timescales.

4.5  |  Plant functions and traits

This approach is agnostic of vegetation classes, plant functional 
types, biome, and plant traits. Plants display incredible variabil-
ity within and across species in linking water and carbon fluxes 
(Chaves et al., 2002). This specific framework appears to be fairly 
insensitive to across-landscape ecosystem functional differ-
ences—apart from how those functional differences collapse onto 
GPP/EF variables. We hypothesize that this implies that biomass/
leaf area variables are the dominant drivers of this general pattern. 
Primary mechanisms that might drive plant-agnostic patterns in-
clude the tight coupling of water availability with surface conduct-
ance (including plant stomatal control, but particularly landscape 
stomatal density), rapid physiological shifts toward energy limita-
tion in response to water inputs, and the scaling of T/ET ratios 
with biomass/leaf area.

The strength of the emergent relationships in this study re-
minds us that the water and carbon cycles are very tightly linked 
as has been demonstrated numerous times (Biederman et al., 2016; 
Huxman et al., 2004; Knapp et al., 2017; Short Gianotti et al., 2019). 
Hypotheses around this tight linkage form the basis for the entire 
sub-field of vegetation optimality theory (Eagleson & Tellers, 1982; 
Franklin et al., 2020; Fu et al., 2022; Mrad et al., 2019; Reynolds & 
Chen, 1996; Smith et al., 2019). In the case of this study, landscape 
coordination dynamics may be different from the effects of single-
plant optimalities.

4.6  |  Additional considerations

While we have included multiple datasets for these analyses, all have 
associated errors, which may be systematic. Further analyses at mul-
tiple spatial scales may help to clarify these relationships empirically 
and mechanistically.

When comparing the individual site dynamics in Figure 2 with 
the across all sites slow eigenvectors in Figure 4f, it seems clear that 
individual sites might follow a more non-linear dynamical system and 
that our linear model is overly simplistic. There is tower-based evi-
dence for this at monthly scales (Short Gianotti & Entekhabi, 2024), 
but, to the best of our knowledge, no general mechanistic model. 
While the general pattern across sites seems likely to be mechanis-
tically tied to the slope fields in Figure 4 (e.g., landscape water use 
efficiency and light use efficiency), it is difficult to design a purely 
empirical model to represent the full behavior of a general dynamical 
system for all sites without being over-parameterized. This may be 
an area of further investigation, particularly using dominant physical 

dynamics along with some degree of empiricism to represent general 
GPP-EF patterns.

5  |  CONCLUSIONS

We see a positively covarying, convex relationship between 
landscape-level carbon and water fluxes. This appears in both (1) 
across-site time means and (2) single-site sub-annual temporal 
dynamics. This pattern emerges in multiple independent data-
sets, including remotely sensed GPP proxies paired with surface 
meteorological observations (Figure  1); individual flux towers 
(Figures 1, 2); and machine-learning-based, observationally driven 
data (Figures 1, 4).

After rain events, across datasets, we see that landscapes dry 
and increase their carbon uptake rate (negative correlation) for days, 
and then switch to a dominant, slow relationship with timescales of 
weeks to months. On these slower timescales, GPP and EF become 
positively correlated; sufficient drying without precipitation leads to 
drought and loss of local carbon sink.

More humid locations have steeper slow GPP-EF slopes, as an 
equivalent loss of moisture in a verdant location leads to a larger ab-
solute loss of biomass or photosynthetic capacity than in a scarcely 
vegetated landscape.

While the spatial and temporal patterns are emergent, an intu-
itive, hypothetical pathway is that excess water availability at the 
landscape-level spurs increasing leaf allocation to reduce light lim-
itation. This could be at the plant level, or simply at the scale of land-
scape growth and reproductive success. Increased photosynthetic 
capacity in turn increases GPP and transpiration, decreasing water 
availability.

We hypothesize that this relationship may be radically dif-
ferent for sites experiencing major disturbance events (Brodribb 
et al., 2020; Peterson et al., 2021). Even if there are generalizable 
processes stabilizing carbon/water dynamics at sub-seasonal times-
cales, they might or might not remain coupled on the successional 
and coordination timescales that control biogeography. At the 
proper time and disturbance scales, however, the relationships 
shown in this study could help to guide projections of natural and 
managed ecosystem behavior, and the response of landscapes to 
management practices and climate change mitigation actions.

Many Earth System Models fail to capture the observed spa-
tial patterns, likely due to insufficient coupling schemes between 
growth, phenology, water availability, and evapotranspiration. This 
implies underlying problems in mechanistic representation of the 
terrestrial water and carbon cycles, which could significantly impact 
the results of carbon, water, and energy budgets in forward runs of 
individual models and the CMIP6 ensemble.

At the basic science level, it is empirically tempting to view 
Figure 4f as a non-linear attractor over which diverse landscapes 
appear to evolve. Minor disturbance—including individual rain 
events—pushes sites away from this curve; they move back toward 
the curve over days, and then perhaps trace its path slowly until 
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the next rain event. This is a very simple representation of the in-
tegrated effects of many complex processes which we currently 
struggle to capture at large scales. A theoretically derived expla-
nation for these empirical patterns—if indeed they hold—would 
greatly assist in constraining global water–carbon feedbacks in 
models and forecasts, as well as our understanding of the stability 
of the broader Earth System.
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