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Abstract
To	bridge	the	knowledge	gap	between	(a)	our	(instantaneous-	to-	seasonal-	scale)	pro-
cess	understanding	of	plants	and	water	and	(b)	our	projections	of	long-	term	coupled	
feedbacks between the terrestrial water and carbon cycles, we must uncover what 
the dominant dynamics are linking fluxes of water and carbon. This study uses the 
simplest	 empirical	 dynamical	 systems	models—two-	dimensional	 linear	models—and	
observation-	based	data	from	satellites,	eddy	covariance	towers,	weather	stations,	and	
machine-	learning-	derived	products	to	determine	the	dominant	sub-	annual	timescales	
coupling	carbon	uptake	and	(normalized)	evaporation	fluxes.	We	find	two	dominant	
modes	across	the	Contiguous	United	States:	 (1)	a	negative	correlation	timescale	on	
the order of a few days during which landscapes dry after precipitation and plants in-
crease	their	carbon	uptake	through	photosynthetic	upregulation.	(2)	A	slow,	seasonal-	
scale positive covariation through which landscape drying leads to decreased growth 
and	carbon	uptake.	The	slow	(positively	correlated)	process	dominates	the	joint	distri-
bution of local water and carbon variables, leading to similar behaviors across space, 
biomes,	and	climate	regions.	We	propose	that	vegetation	cover/leaf	area	variables	link	
this behavior across space, leading to strong emergent spatial patterns of water/car-
bon coupling in the mean. The spatial pattern of local temporal dynamics—positively 
sloped	tangent	lines	to	a	convex	long-	term	mean-	state	curve—is	surprisingly	strong,	
and	can	serve	as	a	benchmark	for	coupled	Earth	System	Models.	We	show	that	many	
such	models	do	not	represent	this	emergent	mean-	state	pattern,	and	hypothesize	that	
this	may	be	due	to	lack	of	water-	carbon	feedbacks	at	daily	scales.
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1  |  INTRODUC TION

The stability of ecosystems and local climates is controlled by 
two-	way—or	 “coupled”—feedbacks	 between	 the	 water	 and	 car-
bon	cycles	 (Green	et	 al.,	2017;	Humphrey	et	 al.,	2021; Lemordant 
&	Gentine,	2019;	 Sage,	2020; Yang et al., 2019).	 In	 one	direction,	
water is a primary control on interannual carbon cycle variability 
(Piao,	Wang,	Wang,	et	al.,	2020).	Water	controls	ecosystem	stress	
(Anderegg	et	al.,	2015; Bartlett et al., 2016; Liu et al., 2020),	pro-
ductivity	 (Babst	 et	 al.,	 2019; Biederman et al., 2016; Feldman, 
Chulakadabba, et al., 2021; Peters et al., 2018;	Post	&	Knapp,	2019; 
Scott	 et	 al.,	 2015),	 and	 biogeography	 (Babst	 et	 al.,	 2019;	 Jiao	
et al., 2021).	In	the	other	direction,	terrestrial	photosynthesis	facil-
itates the diffusive and convective transfer of water and energy at 
the	land-	atmosphere	interface	(Green	et	al.,	2017;	Hong	et	al.,	2019; 
Keenan	 &	Williams,	 2018;	 Knauer	 et	 al.,	 2017;	 Stoy	 et	 al.,	 2019; 
Ukkola et al., 2016).

While	many	questions	about	the	future	of	the	climate	and	eco-
systems concern the coupled feedbacks between water and carbon 
on	annual-	to-	century	timescales,	our	mechanistic	understanding	of	
the	governing	processes	is	largely	at	the	instantaneous-	to-	seasonal	
scales.	Without	proper	understanding	of	how	mechanistic	dynam-
ics	scale	to	longer-	term	patterns	and	behaviors,	it	is	not	possible	to	
constrain	uncertainty	or	even	develop	basic	intuition	of	longer-	term	
projections of the Earth system.

The mechanisms linking the terrestrial water cycle and ecosystem 
carbon	uptake	(gross	primary	productivity	[GPP])	depend	on	ecosys-
tem	 structural	 dynamics	 (e.g.,	 succession,	 growth,	 phenology,	 and	
mortality),	vegetation	physiology	(e.g.,	chemical	signaling,	plant	hy-
draulics,	and	stress	responses),	hydrogeography,	biogeography,	and	
atmospheric boundary layer gas and energy exchanges. These are 
difficult to represent in global models due to the substantial diver-
sity	of	plant	functions,	traits,	and	responses	to	stress	(D'Orangeville	
et al., 2018;	dos	Santos	et	al.,	2021; Lavergne et al., 2019;	Niinemets	
et al., 2015;	Song	et	al.,	2023).	Because	of	this,	it	would	be	beneficial	
to establish simple benchmarks of the coupled water/carbon rela-
tionship	which	capture	the	dominant	dynamics	and	co-	variabilities	
of the two cycles.

We	present	 one	 such	 benchmark,	 namely	 the	 dynamic	 feed-
backs	 between	 landscape-	integrated	 carbon	 uptake	 (GPP)	 and	
water	fluxes.	We	specifically	use	the	landscape	evaporative	frac-
tion	 (EF = �E∕

[

�E + H
]

, for latent heat flux �E and sensible heat 
flux H)	as	our	water	metric.	The	normalization	of	 latent	heat	flux	
by available energy serves to remove many confounding effects 
of temperature and radiation differences across multiple sites. 
The terrestrial water cycle itself is tightly coupled so that water 
supply and demand can be nearly informationally indistinguish-
able	 (Gentine	 et	 al.,	 2007;	 McColl	 &	 Tang,	 2023;	 Seneviratne	
et al., 2010).	 Because	 of	 this,	 EF	 is	 commonly	 used	 as	 both	 a	
metric	of	water	availability	and	of	 land	surface	drying	 (Dirmeyer	
et al., 2000; Dong et al., 2022; Feldman et al., 2022).	 We	 will	

explore the local temporal dynamics of GPP and EF using dynam-
ical systems models—the simplest empirical representation of a 
bi-	directional	 feedback	 system.	We	will	 specifically	evaluate	 the	
dominant	 timescales	 of	 sub-	annual	water/carbon	 interactions	 in	
these ecosystems.

1.1  |  Motivation

Before investigating the temporal dynamics of water and carbon in-
teractions, we first examine the spatial mean patterns. Due to the 
high density of observational data, we will look across the bioclimatic 
gradients	 of	 the	Contiguous	United	 States	 (ConUS).	Figure 1a,c,d 
shows	the	distribution	of	mean	June–August	(JJAS)	GPP versus EF 
across	ConUS	from	multiple	data	sets.	Figure 1a shows GPP from 
the	Moderate	Resolution	Imaging	Spectroradiometer	(MODIS)	GPP	
product	 (MOD17A2)	and	EF	calculated	from	meteorological	varia-
bles	using	the	“evapotranspiration	based	on	equilibrated	relative	hu-
midity”	(ETRHEQ)	method	at	1798	weather	stations	across	ConUS	
(data	from	Short	Gianotti	et	al.	(2019),	and	see	methods).	Because	
MODIS	GPP	is	a	modeled	product—in	particular,	one	which	makes	
assumptions about the water cycle and water use efficiency—it is 
difficult to be certain that the relationship in Figure 1a is not im-
posed algorithmically. For comparison at the same sites, we show 
mean	solar-	induced	fluorescence	(SIF)	data	from	the	GOME-	2	satel-
lite	versus	station-	derived	EF	 in	Figure 1b. Figure 1c shows mean 
JJAS	GPP	vs.	EF	from	available	ConUS	eddy	covariance	flux	towers,	
and	1d	shows	GPP	vs.	EF	from	the	FluxCom	machine-	learning	prod-
uct trained on tower data and driven by meteorological and satellite 
observations. In all panels, we see a convex relationship between 
the	 photosynthetic	metric	 on	 the	 y-	axis	 and	 the	mean	 EF	 across	
sites. The positive correlation is not surprising—locations with more 
available water can support more vegetation and will have higher 
evaporative fractions.

This study will tease apart the dynamic relationships between 
GPP	and	EF	that	lead	to	these	averaged	mean	values.	The	questions	
we	seek	to	answer	here	are	(1)	what	are	the	dominant	timescales	of	
landscape	dynamics	coupling	the	water	and	carbon	cycles,	and	 (2)	
how are the water and carbon cycles linked on each of the times-
cales?	 In	answering	 these	questions,	we	hope	 to	also	explain	how	
these	patterns	in	the	GPP-	EF	space	arise.

2  |  METHODS

To investigate the coupled water and carbon cycles, we focus pri-
marily on two variables:

1. Gross primary productivity is the aggregate rate of carbon 
uptake	 from	 the	 atmosphere	 by	 landscape	 ecosystems.	 We	
use GPP measurements from multiple sources: eddy covariance 
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    |  3 of 18SHORT GIANOTTI et al.

towers	 in	 the	 publicly	 available	 FLUXNET	 2015	 (Pastorello	
et al., 2020)	 and	 AmeriFlux	 (BASE	 and	 FLUXNET)	 datasets	
(Chu	et	al.,	2023; Pastorello et al., 2020),	satellite	retrievals	from	
the	 Moderate	 Resolution	 Imaging	 Spectroradiometer	 (Running	
et al., 2015),	and	estimates	from	the	FluxCom	machine-	learning	
data set driven by eddy covariance and meteorological data 
(Jung	et	al.,	2019; Tramontana et al., 2016).	See	Supplementary 
Table S2 for citations to individual eddy covariance datasets. 
We	 additionally	 use	 temporally	 averaged	 satellite-	based	 SIF	
data	 from	 the	 GOME-	2	 instrument	 (Joiner	 et	 al.,	 2013)	 as	 a	
model-	free	 proxy	 of	 satellite	 GPP.

2.	 Evaporative	fraction	(EF)	is	the	fraction	of	turbulent	energy	flux	at	
the land surface that goes to evaporating water:

where �E is latent heat flux and H is sensible heat flux. EF is 
broadly	monotonic	with	 other	water	 availability	metrics	 (Haghighi	
et al., 2018;	Short	Gianotti	et	al.,	2019)	and	normalizes	latent	heat	
flux to reduce confounding effects of surface energy budget terms—
particularly the latitudinal gradient of mean incoming radiation, 
changing radiation conditions after rainfall, and mean temperatures.

(1)EF =
�E

�E + H

F I G U R E  1 Relationship	of	time-	averaged	carbon	and	water	variables	across	sites	(biogeography).	(a)	Gross	primary	productivity	(GPP)	
versus	evaporative	fraction	(EF)	at	1798	locations	in	the	Contiguous	United	States	(ConUS)	(June–September).	GPP	estimated	from	MODIS	
sensor,	and	EF	estimated	from	surface	meteorological	data	using	the	ETRHEQ	method	(Rigden	&	Salvucci,	2015).	The	red	line	shows	
empirical	curve	fit	and	99%	confidence	interval.	(b)	Same	as	(a)	but	using	solar-	induced	fluorescence	(SIF)	from	GOME-	2	in	place	of	MODIS	
GPP.	At	the	large	spatial	scale,	SIF	covaries	strongly	with	absorbed	photosynthetically	active	radiation	(APAR)	as	a	photosynthetic	proxy.	
(c)	Same	as	(a),	but	with	observations	from	ConUS	eddy	covariance	flux	towers.	(d)	Same	as	(a),	but	using	output	from	the	FLUXCOM.	Both	
figures show a positively covarying, convex relationship across sites/bioclimate variability.
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2.1  |  Spatial and temporal focus

All	 analyses	 are	performed	over	 the	Contiguous	48	United	States	
(ConUS)	where	 the	 coverage	 densities	 of	 flux	 tower	 and	weather	
stations are high.

For daily dynamics, we specifically look at interstorm periods 
(“drydowns”),	 during	 which	 there	 is	 no	 precipitation.	 Landscape	
state	variables	may	have	reliable	state-	dependent	dynamics,	but	 it	
is unlikely that the magnitudes and timings of exogenous precipita-
tion events can be represented without full modeling of atmospheric 
circulation.

Daily data values are for the warm season with responsive veg-
etation	(June	1–September	30)	for	all	years	used	in	each	analysis.

Temporally averaged values for all variables are the average of 
daily	values	from	June	1–September	30	for	all	years.	Temporally	av-
eraged EF values are the ratio of the averaged numerator divided by 
the averaged denominator.

2.2  |  Gridding the Drydowns in the GPP- EF space

Daily values of GPP, EF, and their first differences are used to fit lin-
ear	dynamical	system	models	to	FLUXNET	and	FluxCom	as	shown	in	
Figures 2–4	(see	“Linear	Dynamical	Systems	Model”	section	below).	
These	models	 represent	 the	 daily	 dynamics	 (dEF/dt	 and	 dGPP/dt)	
as functions of the EF and GPP state variables. Because the ends of 
long drydowns tend to have a minimal dynamic range in GPP or EF, 
but with potentially many days of similar data, there is a tendency to 
oversample	these	drydown	tails.	To	avoid	associated	biases	(namely	
fitting	primarily	to	the	driest	conditions,	particularly	in	arid	regions),	
we fit the dynamical system models to a gridded version of the daily 
data	and	first	differences	(see	Figure 2).	Gridded	GPP	and	EF	values	
are	spaced	evenly	 from	zero	 to	 the	maximum	value	observed	at	a	
site	during	all	drydowns	on	a	17 × 17	grid	(17	chosen	as	a	subjective	
qualitative	optimization,	maximizing	 the	number	of	observed	grid-
ded	points	with	relatively	few	unobserved	“holes”	in	the	data	range).	
For	each	of	the	gridded	(EF,	GPP)	pairs,	the	first	differences	(tempo-
ral	derivatives)	are	gridded	using	2D	natural	neighbor	interpolation.	
Grid boxes with no observations are not included. Examples of these 
gridded flow fields are shown in Figure 2	(“Gridded	Flows”),	and	the	
linear models are fit to the gridded EF, GPP, dEF/dt, and dGPP/dt 
values.

2.3  |  Joint density contours

The joint density contours shown in Figure 2 for specific drydown 
days	are	determined	using	all	daily	values	1,	3,	5,	and	7 days	after	
a	precipitation	event.	To	calculate	the	median	contour	(containing	
50%	of	data)	 for	Day	3,	 for	example:	 (1)	All	GPP-	EF	pairs	of	 the	
third	day	of	all	drydowns	are	selected.	(2)	A	joint	(2D)	kernel	den-
sity	is	fit	to	these	pairs.	(3)	GPP-	EF	contours	are	numerically	esti-
mated	at	250	evenly	spaced	density	levels	from	0	to	the	maximum	

density.	(4)	The	cumulative	joint	density	is	calculated	numerically	
using the contour areas and level spacing. The smallest contour 
density is represented by a vertical cylindrical projection of the 
contour	 to	 the	 GPP-	EF	 plane.	 The	 second	 smallest	 contour	 is	 a	
similar cylindrical projection, plus the volume of the smallest con-
tour's	layer,	etc.	(5)	The	“median	contour”	is	that	at	which	the	cu-
mulative	joint	density	(volume)	equals	0.5.	The	set	of	joint	density	
contours shows the general progression of GPP and EF in the days 
following rain events.

2.4  |  MODIS GPP

GPP	 from	 the	 MODIS	 MOD17A2	 product,	 version	 6	 (Running	
et al., 2015),	 is	 used	 only	 in	 Figure 1a	 as	 averaged	 JJAS	 (June–
September)	values	in	comparison	with	contemporaneous	EF	values	
from	USHCN/ETRHEQ	(which	is	available	only	for	Years	2015–2016),	
and	 are	 taken	 from	 Short	 Gianotti	 et	 al.	 (2019).	 500 m	 resolution	
8-	day	composites	are	selected	as	 the	pixel	containing	the	USHCN	
weather station. GPP values are averaged locally for all dates.

2.5  |  GOME- 2 SIF

Solar-	induced	fluorescence	data	are	 from	the	GOME-	2	 instrument	
on	the	MetOp-	A	satellite	(Joiner	et	al.,	2013).	The	data	are	nominally	
measured	at	740 nm	with	a	spectral	resolution	of	0.5 nm	and	a	spatial	
resolution	of	0.5°.	All	SIF	values	(including	negative	values)	are	aver-
aged	for	JJAS	days	for	a	single	mean	value	per	pixel.	We	use	the	SIF	
data	for	 local	contemporaneous	comparison	with	weather	station-	
based	EF	values	(USHCN/ETRHEQ,	see	below),	and	pair	the	weather	
station with the overlapping native pixel.

While	chlorophyll	 fluorescence	yields	are	often	negatively	cor-
related with carbon assimilation on the scale of a single leaf over 
seconds	(e.g.,	sun	flecks),	fluorescence	is	positively	correlated	with	
absorbed	 photosynthetically	 active	 radiation	 (APAR)	 when	 aggre-
gated	in	space	and/or	time	(Jonard	et	al.,	2020).	SIF	can	thus	be	used	
an independent proxy for GPP at aggregated scales, with the benefit 
of	no	inherent	assumptions	about	vegetation	or	water	state	(unlike	
satellite-	derived	GPP).	SIF	data	are	used	only	for	Figure 1b.

2.6  |  Flux towers

To	show	observed	GPP-	EF	relationships	and	our	methodological	ap-
proach in Figure 2, we use daily GPP, latent heat fluxes, sensible heat 
fluxes, precipitation, and soil moisture data from three flux towers 
in	 the	 FLUXNET	2015	FULLSET	data	 set	 (Pastorello	 et	 al.,	2020):	
Willow	 Creek	 (US-	WCr,	 JJAS	 1999–2014)	 in	 northern	 Wisconsin	
(Cook	 et	 al.,	 2004),	 Metolius	 Young	 Pine	 Burn	 (US-	Me6,	 JJAS	
2010–2014)	in	western	Oregon	(Ruehr	et	al.,	2012),	and	Santa	Rita	
Grassland	 (US-	SRG,	 JJAS	 2008–2014)	 in	 southern	 Arizona	 (Scott	
et al., 2015).
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    |  5 of 18SHORT GIANOTTI et al.

The GPP variable used for each site is GPP_DT_VUT_REF. The la-
tent	heat	and	sensible	flux	variables	for	each	site	are	LE_F_MDS	and	
H_F_MDS	which	are	gap-	filled	using	the	MDS	method.	Soil	moisture	
is	SWC_F_MDS_1,	using	the	uppermost	soil	layer.	The	precipitation	
variable	is	P_F,	the	consolidated	site,	and	ERA	precipitation	variable.	
These data are used only in Figure 2.

Drydowns are determined as three or more consecutive days 
with	zero	reported	precipitation.

Additionally,	 we	 use	 GPP	 (GPP_DT_VUT_REF)	 and	 EF	 (LE_F_
MDS,	 H_F_MDS)	 data	 from	 all	 available	 ConUS	 sites	 for	 the	
long-	term	mean	 data	 shown	 in	 Figure 1c. Only sites with more 
than	8 months	of	JJAS	data	are	shown,	and	sites	classified	as	ev-
ergreen needle leaf, wetland, permanent snow or ice, barren, or 
urban	are	excluded.	We	use	all	sites	with	data	available	under	the	
Creative	Commons	CC-	BY-	4.0	Data	License,	all	of	which	are	sum-
marized	and	referenced	 in	Table S2.	Sites	available	 in	more	 than	

one dataset are selected to use the dataset with the longest data 
record.	Data	are	drawn	from	the	FLUXNET	2015	data	collection	
(Pastorello	et	 al.,	2020),	 the	Ameriflux	FLUXNET	data	collection	
(Pastorello	et	al.,	2020),	 and	 the	Ameriflux	BASE	data	collection	
(Chu	et	al.,	2023).

2.7  |  FluxCom

Fluxes of surface sensible heat flux, latent heat flux, and GPP are 
used	 from	 the	FluxCom	machine-	learning	archive	 trained	on	eddy	
covariance	 tower	 data.	 We	 use	 all	 daily	 JJAS	 data	 from	 1980	 to	
2013	 at	 0.5°	 resolution	 over	 ConUS.	 Carbon	 fluxes	 are	 from	 the	
CarbonFluxes	 version	 1	 dataset,	 “FluxCom	 (RS+METEO)	 Global	
Land	Carbon	Fluxes	using	CRUNCEP	climate	data”	using	the	random	
forest	method	 and	CRUNCEP	version	6	 forcing	 (Jung,	2016;	 Jung	

F I G U R E  2 Daily-	scale	dynamics	at	three	example	flux	towers	across	the	humid	to	semi-	arid	axis.	(a)	Willow	Creek	(US-	Wcr,	DBF)	in	
Wisconsin.	(b)	Metolius	Young	Pine	Burn	(US-	Me6,	ENF)	in	Oregon.	(c)	Santa	Rita	Grassland	(US-	SRG,	GRA)	in	Arizona.	Joint	density	is	for	
all	local	daily	JJAS	data	(including	rainy	days),	all	available	years.	Points	in	“All	Drydowns”	plots	(first	or	left-	most	column)	show	daily	(no	rain)	
values colored by observed volumetric soil moisture θ	at	the	tower	site,	and	lines	connect	multi-	day	drydowns.	Arrows	in	“Empirical	Flows”	
plots	(second	column)	show	daily	drydown	progression.	“Gridded	Flows”	plots	(middle	column)	show	gridded	versions	of	the	Empirical	Flows.	
Arrows	in	“System	Evolution”	plots	(last	column)	show	fitted	flowlines,	red	dashed	lines	show	eigenvectors,	colored	contours	show	90%	
probability	density	for	GPP-	EF	pairs	1 day	after	rain	(blue),	3 days	(green),	5 days	(orange)	and	7 days	(red).	The	“System	Evolution”	column	
shows	that	the	dynamics	is	composed	of	a	fast	move	to	a	sloped	GPP-	EF	axis.	The	state	of	the	system	(typified	by	the	progression	of	color	
contours)	drifts	over	time	along	flowlines	and	eventually	becomes	the	most	probable	state	which	is	equivalent	to	the	“All	Drydowns”	joint	
density	(first	column).
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6 of 18  |     SHORT GIANOTTI et al.

et al., 2020; Tramontana et al., 2016).	GPP	and	respiration	partition-
ing	follow	the	method	of	Reichstein	et	al.	(2012).

Latent and sensible heat fluxes are from the version 1 data-
set,	 “FluxCom	 Global	 Land	 Energy	 Fluxes”	 (Jung,	 2018;	 Jung	
et al., 2019; Tramontana et al., 2016).	 The	 turbulent	 fluxes	 are	
based on remotely sensed and meteorological data streams. The 
ensemble values are derived using all energy budget closure 
methods	 (Bowen	 ratio,	 residual	 method,	 and	 uncorrected)	 and	
all	 machine-	learning	 methods	 (artificial	 neural	 network,	 multi-	
adaptive	regression	splines,	and	random	forest)	and	are	driven	by	
the	CRUNCEP	version	6	climate	data.

2.8  |  ETRHEQ turbulent fluxes

Previous research has established and investigated an observed 
land—atmosphere	coupling	pattern—the	minimization	of	the	vari-
ance of the vertical relative humidity profile at the daily scale—
which can be used to estimate surface conductances of moisture, 
sensible	heat,	and	momentum	(McColl	&	Rigden,	2020;	Rigden	&	
Salvucci,	 2015;	 Salvucci	 &	 Gentine,	 2013).	 These	 conductances	
can then be used to derive turbulent fluxes of sensible and latent 
heat from data available at surface meteorological stations, and fi-
nally EF through Equation 1. Turbulent fluxes have been validated 
against	Flux	Tower	observations	(Rigden	&	Salvucci,	2015, 2017).	
Using	 this	method,	EF	was	estimated	previously	 at	1798	ConUS	
surface	 weather	 stations	 (Smith	 et	 al.,	 2011)	 in	 Short	 Gianotti	
et	al.	(2019).	Daily	turbulent	flux	data	available	from	Short	Gianotti	
et	al.	(2019),	which	span	only	the	Years	2015–2016,	are	used	here	
in Figure 1a,b.	This	 temporal	 span	determines	 the	 range	MODIS	
GPP	and	GOME2	SIF	data	used	as	well.	Because	of	the	short	tem-
poral span of these EF data, we caution against using parameter-
ized	curve	fits	in	Figure 1a,b alone for extrapolation. Fit curves are 
shown	for	qualitative	comparison	with	independent	data	sources	
plotted in Figure 1c,d.

2.9  |  CMIP6 data

To determine baseline coupling of the water and carbon cycles 
in models, we use data from the Coupled Model Intercomparison 
Project.	 We	 use	 the	 Pre-	Industrial	 Control	 Run	 Earth	 System	
Model	Experiment	(esm-	piControl,	Figure 5).	We	additionally	use	
data	 from	 the	 Historical	 Earth	 System	Model	 Experiment	 (esm-	
hist)	 in	Figure S3	 to	 show	 the	 impact	of	 land	use	harmonization	
on	GPP-	EF	relationships.	Data	references	for	all	CMIP6	data	are	
in Table S1.

The	 esm-	piControl	 experiment	 is	 designed	 to	 represent	 the	
period	prior	 to	the	onset	of	 large-	scale	 industrialization	 (reference	
Year	1850),	using	a	spin-	up	to	allow	the	climate	to	come	into	balance	
with	 forcing	 (Eyring	et	 al.,	2016).	Models	 all	 have	dynamic	 carbon	
budgets, accounting for fluxes between the atmosphere, ocean, and 
biosphere.

For all experiments, model output is at the monthly scale. In 
Figure 5,	 pixel	mean	GPP	 is	 the	mean	of	 all	monthly	 JJAS	 values.	
Pixel	mean	EF	 is	 the	 ratio	 of	 the	mean	 of	 all	monthly	 JJAS	 latent	
heat	flux	values	to	the	mean	of	all	JJAS	latent	plus	sensible	heat	flux	
values.

2.10  |  Data limitations

MODIS	 GPP	 is	 a	 modeled	 product	 based	 on	 assumptions	 about	
water use and vegetation class. This, of course, can lead to biases 
and	artifacts.	That	said,	MODIS	GPP	is	entirely	independent	of	the	
ETRHEQ	fluxes,	albeit	with	potential	spatial	representativeness	 is-
sues	 between	 the	 two.	 Individual	 SIF	 retrievals	 from	 space	 have	
very	low	signal-	to-	noise	ratios,	but	by	aggregating	in	time,	errors	are	
greatly	reduced	(see	Short	Gianotti	et	al.	(2019)	for	spatio-	temporal	
relationships	with	water).	The	strong	similarities	between	 the	 two	
independent	satellite	products	(MODIS	GPP,	GOME-	2	SIF),	and	their	
further similarities with the longer duration Flux Tower and FluxCom 
data in Figure 1c,d in their relationships with EF, is evidence that the 
carbon–water	relationship	 in	Figure 1 is likely physical rather than 
artificial.

Flux towers are not common enough to represent the range of 
biomes	and	climates,	even	in	the	United	States,	but	are	benchmark	
references for local surface fluxes. FluxCom is based on the complex 
covariances of variables observed at flux towers, and relationships 
within	the	data	can	always	potentially	be	driven	by	hard-	wired	mis-	
specification errors.

Any	 benchmark	 for	 physical	 models	 would	 ideally	 be	 deter-
mined	using	observations.	The	machine-	learning	algorithms	used	
in estimating GPP and EF, while driven by meteorological and 
remotely sensed observations are of course statistical models 
themselves, which leaves opportunity for errors in process rep-
resentation, just as physical models do. Despite this, the FluxCom 
data	does	not	 impose	physical	parameterizations	 (aside	from	en-
ergy	 balance	 corrections)	 that	 physical	 models	 a	 priori	 assume,	
which	provides	an	independent	estimation	of	daily-		and	seasonal-	
scale processes for comparison with other independent data sets. 
Additionally,	 the	FluxCom	data	are	trained	on	daily	observations	
at	 eddy	 covariance	 sites	 specifically	 to	optimize	 the	 representa-
tion	of	complex,	non-	linear	responses	of	surface	fluxes	to	meteo-
rological forcing. These dynamics are then driven by observations, 
which we expect to empirically encode some of the physical pro-
cesses	captured	by	remote	sensing	(MODIS),	flux	towers,	and	me-
teorological	 data	 (CRUNCEP),	 including	 their	 biometeorological	
co-	evolution	at	sub-	seasonal	scales.	We	suspect	that	the	FluxCom	
data	are	the	best	available	benchmarking	tool	for	studying	the	co-	
evolution of land surface fluxes at continental scale without im-
posing	that	co-	evolution	structure	physically.	We	also	suspect	that	
there will be errors in the extrapolation of statistical relationships 
to	 sites	which	 are	 poorly	 represented	 by	 the	 FLUXNET	 training	
data, and so the parameters estimated from this data have high, 
and difficult to estimate uncertainties.
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    |  7 of 18SHORT GIANOTTI et al.

2.11  |  Interstorm Drydowns

Drydowns for the fluxes associated with the FluxCom data are de-
termined	using	the	Climate	Prediction	Center's	Unified	Gauge-	Based	
Analysis	of	Daily	Precipitation	over	ConUS	(CPCU)	gridded	precipi-
tation	data	interpolated	from	daily	station	data	(Chen	et	al.,	2008).	
Individual drydowns are defined as three or more consecutive days 
with no precipitation reported. For compatibility with FluxCom 
data,	all	daily	fluxes	from	the	 lower	resolution	 (0.5°)	FluxCom	grid	
are	matched	with	precipitation	 time	series	on	 the	0.25°	precipita-
tion	 CPCU	 grid	 (un-	interpolated	 down-	scaling).	 Fluxes	 occurring	
during identified drydowns from any CPCU pixel are then pooled 
and	assigned	back	to	the	coarser-	scale	FluxCom	grid	so	that	GPP-	EF	
co-	evolutions	 during	 drydowns	 are	 represented	 according	 to	 the	
fraction	 of	 the	 pixel	 experiencing	 a	 drydown.	 All	 JJAS	 drydowns	
from	1980	to	2013	are	included.

2.12  |  Linear dynamical system model

We	use	a	two-	dimensional	linear	time-	invariant	(LTI)	dynamical	sys-
tems	model	for	the	analysis	of	first-	order	co-	evolution	between	GPP	
and EF:

where the parameters EF⋆ and GPP⋆ determine the fixed points of the 
system and a1–a4 are regression coefficients. This model treats the dy-
namics	of	GPP	and	EF	as	state-	dependent	so	that	changes	in	each	vari-
able in time are a function of the current GPP and EF states. Positive 
values of a3, for example, suggest that higher EF values at a site are 
generally followed by an increase in GPP on the following day. This is 
the	simplest	state-	dependent	model	of	a	coupled	two-	variable	system,	
but can still yield somewhat complex distributions of the variables in 
time.	We	specifically	 apply	 this	model	only	during	drydown	periods	
between rain events, as the dynamics of precipitation are radically dif-
ferent	from	those	of	the	interstorm	periods	(both	in	terms	of	radiation	
and	humidity	gradients).	Systems	such	as	these	are	much	simpler	than	
non-	linear	dynamical	models	(such	as	the	common	Lotka-	Volterra	pop-
ulation	model)	or	time-	varying	systems	(where	the	a1–a4 parameters 
would	change	in	time),	and	thus	have	a	rich,	well-	established	theoreti-
cal	base.	The	system	has	two	eigenvectors	in	the	GPP-	EF	space,	each	
with	an	associated	eigenvalue	 (timescale).	The	eigenvectors	cross	at	
the point 

(

EF
⋆
, GPP

⋆
)

.
We	fit	the	model	at	daily	timestep	to	FLUXNET	and	FluxCom	

data, using only data within landscape drydowns between rain 
events	of	3 days	or	more.	These	data	and	 their	 first	differences	
are	 gridded	 in	 the	 GPP-	EF	 space	 (see	 above)	 and	 then	 used	 to	(2a)

dEF

dt
=a1

(

EF−EF
⋆
)

+a2

(

GPP−GPP
⋆
)

(2b)dGPP

dt
=a3

(

EF−EF
⋆
)

+a4

(

GPP−GPP
⋆
)

F I G U R E  3 Empirical	model	parameters	from	daily	JJAS	FluxCom	estimates.	Parameters	for	the	linear	dynamical	system	model:	
dEF∕dt = a1

(

EF − EF
⋆
)

+ a2

(

GPP − GPP
⋆
)

 and dGPP∕dt = a3
(

EF − EF
⋆
)

+ a4
(

GPP − GPP
⋆
)

	(e.g.,	Equation 2).	The	parameters	are	estimated	
from	daily	gross	primary	productivity	(GPP)	and	evaporative	fraction	(EF)	values	between	rain	events,	as	in	Figure 2. The EF → EF notation 
highlights	that	(e.g.)	parameter	a1	captures	the	feedbacks	from	the	current	EF	value	to	the	following	day's	EF	value.	Negative	values	suggest	
a negative feedback toward the intersection of the eigenvectors at 

(

EF
⋆
, GPP

⋆
)

. Positive values suggest a positive feedback—in this case, 
high	EF	values	leading	to	EF	increases	for	the	next	day	and	low	EF	values	leading	to	further	decreases	in	time	(the	latter	being	the	typical	
drydown	progression).
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8 of 18  |     SHORT GIANOTTI et al.

calculate maximum likelihood estimators of the system parame-
ters. In each grid box, the EF, GPP, dEF/dt, and dGPP/dt values are 
calculated. Taken over all grid boxes, these data are used to esti-
mate the parameters a1, a2, a3, a4, EF

⋆, GPP⋆ at an individual site. 
Although	these	equations	are	linear	in	EF	and	GPP,	they	are	not	
linear	 in	the	parameter	space,	so	we	use	an	unconstrained	non-	
linear	optimization	to	minimize	the	squared	(univariate	Gaussian)	
errors of the dEF/dt and dGPP/dt values given the gridded EF and 
GPP values. This approach is similar to a weighted regression of 
the	daily	data	with	area-	weighting—larger	weights	for	 individual	
observations	in	less-	sampled	areas	and	smaller	weights	in	highly	
sampled areas.

Together,	the	system	parameters	(or	equivalently,	the	eigenval-
ues and eigenvectors of 

⎡

⎢

⎢

⎣

a1 a2

a3 a4

⎤

⎥

⎥

⎦

),	determine	fast	and	slow	system	evo-
lution.	Combined	with	the	system	shocks	(i.e.,	precipitation	events),	
the system determination defines a joint distribution of EF and GPP 
(Brubaker	&	Entekhabi,	1996).

Eigenvector slopes can be written as

for the fast or slow eigenvectors associated with eigenvalue �.

While	 linear	 models	 of	 GPP-	EF	 dynamics	 can	 represent	 fairly	
complex	behaviors	(e.g.,	Figure 2),	they	are	by	construct	simplistic.	
We	 select	 these	models	 not	because	we	believe	dynamics	 are	 in-
herently	linear,	but	because	they	allow	us	to	summarize	some	basic	
properties of local water/carbon interactions—dominant timescales 
and slopes of interaction.

3  |  RESULTS

3.1  |  How do sub- seasonal dynamics drive the 
mean state?

The	daily	co-	evolution	of	GPP	and	EF	is	subject	to	water	availability	
shocks via rainfall. To uncover how local physical processes drive 
temporal	dynamics,	we	examine	the	observed	evolution	of	GPP-	EF	
values	across	time	at	eddy	covariance	towers	(Figure 2).	The	local	
joint distributions of daily GPP and EF are shown for three locations, 
with	 stronger	 temporal	 covariance	 shown	 in	 more	 water-	limited,	
arid locations. The evolution of fluxes at a daily scale is shown dur-
ing all drydowns after precipitation events, demonstrating a pro-
gression generally toward the higher density portions of the joint 

(3)
dGPP

dEF
=
�−a1

a2

=
a3

�−a4

F I G U R E  4 Fast	and	slow	temporal	dynamics	of	sub-	seasonal	GPP-	EF	co-	evolution.	(a)	Timescale	of	fast	dynamics	using	daily	FluxCom	
JJAS	GPP	and	EF	and	LTI	model	(Equation 1)	after	rain	events;	timescales	are	uniformly	on	the	order	of	1–8 days.	(b)	dGPP/dEF	slope	for	
fast	dynamics	during	drydowns,	negative	(increasing	Gross	primary	productivity	[GPP]	and	decreasing	evaporative	fraction	[EF])	across	
the	Contiguous	United	States	(ConUS).	(c)	Fast	eigenvectors	for	every	pixel	in	(a,	b),	with	range	equal	to	local	quantiles	0.05–0.95	for	all	
JJAS	daily	data.	Slopes	(lower	panel)	become	more	negative	with	increasing	mean	EF.	(d–f)	Same	as	(a–c)	but	for	slow	dynamics.	Timescales	
(d)	typically	on	the	order	of	30 days,	timescale	signs	imply	feedback	class	and	separate	water/energy	limitation.	Slopes	are	positive	across	
ConUS	and	increase	with	mean	EF.	Light	line	in	(f)	shows	mean	values	for	all	pixel	eigenvectors	in	25	uniform	EF	bins.
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    |  9 of 18SHORT GIANOTTI et al.

distributions,	and	a	longer-	term	progression	toward	arid	states	(low	
EF	and	low	GPP),	particularly	for	the	more	arid	locations.

To empirically evaluate the landscape response after a precipi-
tation shock, we fit linear dynamical system models to gridded val-
ues	of	the	daily-	scale	co-	evolution	of	GPP	and	EF	(Figure 2	“System	
Evolution”).	These	models	are	the	simplest	empirical	fit	of	the	flow	
field	for	the	GPP-	EF	space.

The empirical dynamics in Figure 2 are represented by fast 
and	slow	eigenvectors,	which	establish	the	primary	axes	of	within-	
drydown	 system	 evolution.	 The	 fast	 dynamics	 drive	 the	 GPP-	EF	
state over the course of days toward the slow eigenvectors, which 
are	also	the	areas	of	higher	joint	density.	Within	drydowns	after	rain-
fall,	EF	decreases,	and	GPP	increases	(negative	covariation)	until	the	
water	becomes	limiting;	then	GPP	falls	in	tandem	with	EF	(Feldman	
et al., 2018, 2019;	Feldman,	Short	Gianotti,	et	al.,	2021).	The	land-
scape	 then	 follows	 the	 slow	 eigendirection	 on	weekly-	to-	monthly	
scales,	which	determines	the	primary	axis	of	water-	carbon	temporal	
coupling	(now	positive	covariation),	most	dramatically	in	areas	with	
less	frequent	rain.	Note	that	the	dGPP/dEF	slope	of	the	slow	eigen-
vector is steepest in the wettest location and shallowest in the driest 
location.	This	holds	broadly	across	ConUS	flux	towers	(median	fast/
slow	timescales:	2.4 days	/	21.1 days)	and	corresponds	 to	 the	geo-
graphical convexity of Figure 1.

3.2  |  Fitting to FluxCom data

We	perform	the	same	analyses	shown	 in	Figure 2 to each pixel 
in the spatially gridded FluxCom dataset to determine model 

parameters	for	each	location	in	ConUS.	Figure 3 shows the esti-
mated parameters for the model in Equation 2. Direct feedbacks 
from	EF	to	itself	(a1)	are	always	negative	because	the	landscape	
is	always	drying	between	rain	events.	GPP	feedbacks	to	EF	 (a2)	
are positive as both photosynthetic upregulation and higher bio-
mass correlate with higher transpiration. EF feedbacks to GPP 
(a3)	 are	positive	due	 to	both	 stomatal	 and	growth	 responses	 to	
water	availability	(Claeys	&	Inzé,	2013).	When	GPP	feedbacks	to	
itself	 (a4)	 are	 negative,	 this	 implies	 no	water	 buffer	 for	 photo-
synthetic upregulation—the dominant stable state in this case is 
desiccation.

Figure 4a,b shows the timescales of the fast dynamics and the 
slopes of the corresponding eigenvectors from FluxCom data at 
each	grid	point.	As	with	flux	towers,	the	fast	eigenvectors	(median	
ConUS	 timescale	3.8 days)	have	negative	slopes	as	EF	decreases	
and GPP increases in the days immediately following rain. This 
demonstrates	 one	 basic	 hydrological-	ecophysiological	 coupling	
mechanism: between storms, plants take up water and dry soils, 
allowing	 for	 rapid	 (e.g.,	 stomatal,	 hormonal,	 growth	 acclimation,	
and	 turgor/osmotic	 adjustment)	 photosynthetic	 upregulation	
while	water	is	sufficiently	abundant	(Claeys	&	Inzé,	2013; Feldman 
et al., 2018;	Feldman,	Short	Gianotti,	et	al.,	2021).	This	is	a	phys-
iological	response	to	pulses	of	water	availability.	A	slope	value	of	
−1	 gC/(m

2	 ∙	 day)	 can	 be	 directly	 interpreted	 as,	 for	 example,	 an	
increase in GPP of 0.1 gC/(m

2∙day)	as	EF	decreases	by	0.1	 in	 the	
first	days	after	rainfall.	Steeper	slopes	in	irrigated	regions	suggest	
either	highly	water-	sensitive	vegetation	or	that	changes	in	EF	are	
due	to	exogenous	covariates	(e.g.,	harvest	and	accompanying	end	
of	irrigation).

F I G U R E  5 Sample	of	Earth	System	
Models	from	the	CMIP6	esm-	piControl	
experiment show a range of spatial 
covariance	structures	(biogeography),	
often misrepresenting the observed 
spatial relationship seen in Figures 1 
and 4.	Results	in	Figure	5	implicate	the	
coupled relationship between biomass 
or leaf area and water availability metric 
evaporative	fraction	(EF).
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10 of 18  |     SHORT GIANOTTI et al.

3.3  |  Local slow temporal dynamics are tangent 
to the geographic distribution

Slow	dynamics	(median	ConUS	timescale	33 days,	Figure 4d,e)	rep-
resent	 the	 sub-	seasonal	 co-	evolution	 of	water	 and	 carbon	 fluxes,	
all with positive dGPP/dEF slopes. These positive slopes imply that 
the	dominant	local	co-	evolution	of	water	and	carbon	fluxes	is	posi-
tively correlated and drives the positive covariance of the local joint 
GPP-	EF	densities	(e.g.	Figure 2	“Joint	Density”).	This	is	the	long-	term	
growth	 response	 and	mode	 for	 EF-	GPP	 coupling.	Negative	 eigen-
values imply strong water limitation as for parameter a4 in Figure 3.

The slow dGPP/dEF are more positive in more humid regions, 
and in particular increase with increasing climatological mean GPP 
and mean EF. This increasing local dGPP/dEF slope across geogra-
phy—effectively	an	 increasing	normalized	 landscape	WUE—implies	
that landscapes are more sensitive to changes in water availability 
in	more	 humid	 regions.	 This	 is	 counter	 to	 the	 plant-	level	 intuition	
of higher sensitivities in more arid conditions, but implicates total 
photosynthetic	capacity	(e.g.,	biomass	and	leaf	area—positively	cor-
related	 with	 water	 availability	 and	 transpiration)	 as	 the	 dominant	
driver of this coupling. Figure 4e	 is	quite	 similar	 to	maps	of	mean	
growing season leaf area index or vegetation density.

We	note	that	the	individual	eigenvectors	in	Figure 4f are oriented 
along	their	own	geographic	distribution	(convex	curve).	While	local	
GPP-	EF	dynamics	at	monthly	timescales	need	not	be	linear	by	any	
specific	theory,	the	slow	slopes	are	a	best-	linear	approximation—ef-
fectively tangents to a convex spatial curve.

These paired emergent relationships in time and space suggest that 
the	temporal	dynamics	of	ecosystems	(rather	than	a	static	biogeogra-
phy)	drive	the	mean-	state	water/carbon	coupling	seen	in	Figure 1	(see	
Figure S1	for	direct	comparison).	It	is	known	that	phenology	and	sub-	
seasonal	processes	are	critical	in	determining	aggregate	GPP	(Pappas	
et al., 2017;	Piao,	Wang,	Park,	et	al.,	2020).	Figure 4	suggests	that	sub-	
seasonal	processes	also	drive	the	water–carbon	feedbacks,	in	particu-
lar	the	landscape	WUE	represented	by	the	slope	of	the	curve.

Quantitatively,	using	the	 long-	term	mean	curves	of	Figure 1 to 
estimate the slopes of the slow eigenvectors for daily FluxCom data 
in Figure 4f	tend	to	slightly	underestimate	the	slope	(when	evaluated	
across all FluxCom pixels, see Figure S2).	Differences	between	using	
the curves from Figure 1a,c, or d are minimal.

3.4  |  Earth system model performance

The spatial patterns depicted in Figure 1	can	be	thought	of	as	space-	
for-	time	 representations	 of	GPP	 and	 EF	 dynamics	 at	much	 longer	
timescales. To whatever extent diverse ecosystems couple GPP and 
EF along similar patterns, the mean states represent snapshots from 
a	dynamic	equilibrium	of	successionary,	adaptive,	growth-	mortality,	
and climate coordination timescales. Mean states from networks of 
eddy	covariance	 tower	 sites	 (not	 shown)	 show	similar	 convex	pat-
terns to Figure 1, which lends support to the robustness of the emer-
gent behavior.

For	 comparison	 with	 our	 observation-	driven	 relationships,	 we	
show	a	sample	of	the	same	spatial	relationship	from	ESMs	from	the	
CMIP6	esm-	piControl	experiment	with	no	imposed	land	harmoniza-
tion	(Figure 5),	which	show	diverse	and	diverging	GPP/EF	relation-
ships	(see	Figure S3	for	land	use	harmonization	comparison).	These	
relationships	are	not	parameterized	 in	models,	but	 instead	emerge	
from complex mechanistic representation of the coupled water and 
carbon cycles. Different models represent and include different 
physiological and ecological disturbance processes, but we would 
expect the spatial distribution of coupled water and carbon to show 
similar patterns to observations. Differences between the geogra-
phy	of	modeled	and	observed	GPP-	EF	imply	that	ecosystem	water–
carbon feedbacks may not be properly represented in some models, 
but the explanation for these mismatches is not yet mechanistically 
clear. Candidate mechanisms include growth and mortality dynamics 
(Anderegg	et	al.,	2015),	water/energy	limitations	on	biomass	produc-
tion	 (Schwalm	 et	 al.,	2017),	 differences	 in	 growth-		 and	 photosyn-
thetic	sensitivities	to	water	state	(Claeys	&	Inzé,	2013; Manandhar 
et al., 2017;	Potkay	&	Feng,	2023),	and	temporal	alignment	of	grow-
ing seasons with water availability and atmospheric water demand.

We	highlight	the	GFDL-	ESM4	model,	which	best	captures	the	convex	
spatial	pattern	across	ConUS	in	Figure 5.	GFDL-	ESM4	is	one	of	only	two	
ESMs	(along	with	EC-	Earth3)	in	the	CMIP6	archive	to	represent	dynamic	
ecosystem	demography	(Shevliakova	et	al.,	2024).	The	other	three	mod-
els in Figure 5	do	not	represent	sub-	annual	changes	in	vegetation	type,	
nor	do	they	represent	sub-	seasonal	feedbacks	from	terrestrial	water	to	
daily	plant	dynamics.	By	comparison,	the	land	surface	model	in	GFDL-	
ESM4	 represents	multiple	 cohorts	of	vegetation	per	grid	 cell,	 each	of	
which compete for water and energy resources at model timestep; and 
each	cohort's	leaf	(LAI),	wood	(height),	root,	and	sapwood	carbon	pools	
are updated daily in response to land surface conditions. This affects 
downstream vegetation cover fraction, albedo, and surface roughness, 
and allows vegetation dynamics to feed forward into the daily dynamics 
of the atmospheric boundary layer, including the water and energy cy-
cles	(Shevliakova	et	al.,	2024).	This	does	not	conclusively	prove	that	the	
coupling	of	water	and	carbon	dynamics	at	the	(ca.	3-	day	and	ca.	monthly)	
timescales we present here is the only driving force in the patterns of 
Figures 1, 5.	 It	does	however	 strongly	 suggest	 that	 inclusion	of	daily-	
to-	monthly-	scale	feedbacks	may	be	enough	to	push	ESMs	toward	the	
observed	relationships.	GFDL-	ESM4	does	not	have	coupled	nitrogen	dy-
namics interacting with the terrestrial carbon model, suggesting that—at 
least	over	ConUS—water/carbon	interactions	(such	as	those	in	Figure 4f)	
may	be	the	dominant	drivers	of	the	mean-	state	patterns	in	Figure 1.

A	more	 complete	 interrogation	of	 the	 role	of	 dynamics	 versus	
static	 tuning	 parameters	 in	 ESMs	would	 require	 analyses	 at	 daily	
output timescales, as opposed to the aggregated monthly values 
used in Figure 5.

4  |  DISCUSSION

In	 both	 tower-	based	 and	 FluxCom-	based	 analyses,	 the	 coupling	
between water availability and carbon uptake is essentially always 
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negative	 (GPP	 increases	as	EF	decreases)	on	daily	 timescales.	The	
opposite is true at monthly timescales; GPP and EF are always posi-
tively coupled, and both decrease monotonically after rain. Broadly, 
we	 find	 that	water–carbon	 dynamics	 change	 signs	 between	 short	
and	long	timescales.	The	difference	in	sign	for	the	two	sub-	annual	
dynamics	 can	be	 formalized	 in	 the	eigenvector	 slopes	 in	Figure 2, 
and Figure 4b,e. Fast processes with photosynthetic upregulation 
dominate	on	timescales	of	ca.	1–5 days;	slow	(ca.	monthly)	processes	
dominate beyond this, as landscape productivity rises and falls with 
available water. This behavior—switching from immediate negative 
correlation to positive correlation—has also previously been ob-
served in entirely independent datasets of landscape vegetation 
water	content	and	soil	moisture	(Feldman	et	al.,	2018).

The general emergent convex patterns seen in Figure 1 can be 
understood from the slow dynamics as follows:

1. The long- term mean values of GPP and EF are driven by slow 
(monthly scale) dynamics. The slow eigenvectors represent the 
dominant	 GPP-	EF	 conditions	 for	 ecosystems.	 The	 simple,	 em-
pirical	 models	 quantify	 the	 dynamics	 of	 ecosystem	 behavior,	
namely	 the	 dynamic	 mean-	state	 and	 responsiveness	 of	 the	
system	 to	 perturbations	 from	 that	 dynamic	 equilibrium	 (De	
Frenne et al., 2021;	 Shekhar	 et	 al.,	 2023).	 Following	 precipi-
tation,	 ecosystems	move	 rapidly	 (ca.	 1–5 days)	 toward	 the	 slow	
eigenvector,	 and	 then,	 the	 variables	 co-	evolve	 slowly	 in	 the	
slow	 eigenvalue	 direction	 (e.g.,	 colored	 contours	 in	 Figure 2)	
with dGPP/dEF rates given by the slopes in Figure 4e. This 
pushes	ecosystems'	 joint	GPP-	EF	distributions	 toward	 the	 slow	
eigenvector,	 which	 serves	 as	 their	 main	 axes	 of	 dynamic	 equi-
librium.	 The	 modes	 of	 ecosystem	 GPP-	EF	 distributions	 should	
lie along or near their slow eigenvectors.

2. Wetter locations have steeper dGPP/dEF slopes.	 Somewhat	 coun-
terintuitively,	equivalent	changes	in	EF	correspond	to	larger	GPP	
changes in humid ecosystems than in more arid ecosystems. 
While	EF	is	also	non-	linearly	related	to	more	direct	water	supply	
metrics—such	as	volumetric	soil	moisture	or	soil	saturation	(Short	
Gianotti et al., 2019)—previous	 research	 suggests	 that	 evapo-
rative metrics may be in some ways ideal for explaining water/
carbon	 coupling	 relationships	 (Biederman	 et	 al.,	 2016; Franklin 
et al., 2020;	Huxman	et	al.,	2004;	Knapp	et	al.,	2017).	Additionally,	
GPP	itself	is	non-	linearly	related	to	direct	soil	water	supply	(Short	
Gianotti et al., 2019),	and	should	vary	to	some	degree	with	energy	
availability,	which	EF	normalizes	for.

3. Slow dGPP/dEF slopes are controlled by biomass.	While	we	might	
think of arid regions having more sensitivity to water availability 
metrics than humid regions, the larger slopes in Figure 4 and the 
convexity	 of	 the	 spatial	 and	 temporal	GPP-	EF	 curves	 are	more	
intuitive if we bear in mind that GPP is proportional to vegetation 
metrics	such	as	above-	ground	biomass,	vegetation	cover	fraction,	
or	leaf	area	(LAI),	simply	through	total	landscape	chlorophyll	and	
APAR.	A	shock	to	the	water	availability	in	sparse	desert	may	have	
large	per-	plant	relative	impacts,	but	will	still	lead	to	much	smaller	
aggregate GPP change than a similar shock to a highly productive 

forest.	 Still,	 it	 is	 not	 at	 all	 obvious	 that	 biomass	 state	 variables	
themselves are sufficiently sensitive to water availability so as to 
dominate	the	plant-	level	responses	across	plant	functional	types,	
photorespiratory	pathways,	and	isohydricity	(Claeys	&	Inzé,	2013; 
Manandhar et al., 2017; Pan et al., 2022;	Schwalm	et	al.,	2017).	It	
does appear, however, that aggregate biomass metrics dominate 
the	water/carbon	 coupling	 relationship	 at	 landscape	 scale	 (e.g.,	
convex shapes of Figures 1, 4f, increasing slope with water avail-
ability in Figures 2, 4e,f.	See	also	Figure S4).

4. Steeper dGPP/dEF dynamic equilibria on monthly scales lead to 
the convex relationship across sites. The effect of steeper dGPP/
dEF	 relationships	 (slow	 eigenvector	 slopes,	 dominant	 axis	 of	
dynamic	equilibrium)	is	that	the	mean	values	of	GPP	and	EF	fall	
along	a	convex,	non-	linear	curve	in	Figure 1. The coherence of 
this shape across biomes and climate is surprising. The general-
ity	of	this	shape	(and	the	co-	alignment	of	the	slow	eigenvectors	
to	form	a	similarly	convex,	coherent	tangent	bundle)	suggests	
some	near-	equivalence	of	dynamics	across	vegetation	biodiver-
sity.	Again,	this	 is	counterintuitive	based	on	decades	of	study	
on the large range of plant sensitivities to water and strate-
gies	of	water	use,	both	across	and	within	species	(D'Orangeville	
et al., 2018; Lavergne et al., 2019;	Niinemets	et	al.,	2015;	Song	
et al., 2023).

The role of biomass in this coupling provides a likely explana-
tion,	 Laboratory	 experiments,	 and	 plant-	scale	 optimality	 theories	
argue for increased plant water use efficiency in drier conditions 
pushing	carbon–water	correlation	more	toward	negative;	(Harrison	
et al., 2021;	Katul	et	al.,	2009;	Lambers	&	Oliveira,	2019,	pp.	60–64;	
Walker	 et	 al.,	2020).	Much	 of	 this	 is	 driven	 by	 sub-	hourly	 stoma-
tal	 responses	 and	 sub-	daily	 photochemical	 regulation	 (Lambers	
&	 Oliveira,	 2019;	 Schymanski	 et	 al.,	 2015).	 At	 the	 ecosystem	
scale,	 however,	 biomass	 increases	with	water	 availability	 (Franklin	
et al., 2020),	 along	with	 the	 photosynthetic	 capacity	 of	 the	 land-
scape. This change in sign—akin to the changes in sign for dGPP/
dEF	at	different	timescales—shows	the	way	in	which	carbon–water	
“optimization”	is	scale-	dependent	(Kull,	2002;	Niu	et	al.,	2011).	We	
suggest	 that	 leaf-	scale	 optimality	 drives	 ecosystems	 quickly	 (e.g.,	
Figure 4c)	 to	 the	 slow	 (positively	 correlated)	 dynamic	 equilibrium	
of	the	landscape	(e.g.,	Figure 4f)—governed	by	monthly	growth,	se-
nescence, mortality, propagation, and disturbance response—which 
could	be	seen	as	its	own	landscape	optimization	of	water	and	carbon	
(Anderegg	et	al.,	2015; Richardson et al., 2013).

4.1  |  Across- sites time- mean, local slow 
dynamics, and space- for- time substitutions

The spatial patterns in Figure 1	are	qualitatively	similar	to	the	tem-
poral	patterns	 (across	space)	 in	Figure 4f. The curve traced out by 
the	spatial	ensemble	of	slow	eigenvectors	(Figure 4f)	is	an	emergent	
behavior of the coupled water/carbon cycle dynamics. Individual 
slow eigenvectors look conspicuously like tangents to the spatial 
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pattern	mapped	out	by	the	mean	curve	(Figure 4f)	or	the	long-	term	
mean	values	(Figure 1).

Although	we	do	not	have	a	theoretical	model	for	a	general	(tem-
poral	and	across-	sites)	relationship	to	explain	all	of	the	dynamics	in	
Figure 4c,f,	we	speculate	that	the	EF-	GPP	state	of	these	landscapes	
move	 toward	 that	 spatial	 mean	 curve	 relatively	 quickly	 (ca.	 days)	
after	 rain	events,	with	EF	drying	 and	GPP	 increasing.	As	 they	 ap-
proach the mean curve, they dry more slowly along it with positive 
slope	(EF	still	drying,	but	GPP	decreasing)	until	another	precipitation	
event	disturbs	the	state	evolution	again.	A	general	model	could	be	
very useful if it has predictive power for landscape evolution during 
interstorm periods and would be even more so with theoretical 
explanation. This could, in particular, be helpful in estimating the 
short-	to-	medium-	term	effects	of	 landscape	disturbances.	We	pro-
pose that these results could help land managers to establish likely 
behaviors of landscapes in response to changes in water regime or 
disturbances	in	above-	ground	biomass.

We	hypothesize	 that	 local	 temporal	 land	surface	dynamics	are	
tangent to the mean curve in Figures 1 and 4f	 whenever	 space-	
for-	time	substitutions	are	appropriate.	This	can	only	happen	at	the	
proper spatial and temporal scales. For example, on daily times-
cales all sites have dynamics somewhat orthogonal to that curve 
(Figure 4c).	Similarly,	sites	recovering	from	major	disturbance	 (e.g.,	
deforestation)	likely	do	not	follow	this	coupling	pattern	because	the	
water and carbon cycles become uncoupled until such point that re-
cruitment, succession, and adaptation processes bring the system 
back	to	a	new	dynamic	equilibrium.	Additionally,	space-	for-	time	sub-
stitutions and the effects of aggregation scale are complicated by 
the	 role	of	 Jensen's	 inequality,	which	 requires	 that	 any	non-	linear	
relation	cannot	be	equivalent	across	different	transformations	(e.g.,	
spatial	or	temporal	averaging)	of	the	underlying	variables.	A	fascinat-
ing	question	arises,	whether	there	is	a	transformation	of	the	water/
carbon variables that is sufficiently linear to represent the dynamic 
equilibria	across	all	time	and	spatial	scales.

4.2  |  Observational benchmark for earth system 
model emergent behaviors

The	 ESM	 data	 shown	 in	Figure 5	 (JJAS	 pixel	means	 over	 ConUS)	
are intended to be compared with both the observational data in 
Figure 1 and the emergent spatial pattern from local temporal dy-
namics shown in Figure 4f.	While	some	models	show	a	general	re-
lationship between GPP and EF across space, the patterns shown 
are	 in	 some	cases	quite	different	 from	 the	 convex	 shapes	 seen	 in	
Figures 1, 4.	While	 some	ESM	experiments	 impose	 land	use	 “har-
monization”	 (prescribed	 land	use	pathways)	 to	 simplify	 intermodal	
comparison, we would expect any models with directly coupled 
carbon and water cycles to display similar emergent coupling pat-
terns to observations. The fact that the models in Figure 5 do not all 
display	 these	patterns	suggests	either	mis-	parameterization	 in	 the	
water	and	carbon	cycles	individually,	or	that	fully	coupled	daily-	to-	
monthly-	scale	dynamics	between	plants	and	water	(e.g.,	response	of	

growth processes to water availability, transpiration dynamics, and 
magnitude	 of	 phenological	 variability)	 are	 necessary	 to	 get	 mean	
GPP and EF correct for the correct reasons.

Predictions of the global carbon and water budgets from Earth 
System	 Models	 in	 future	 climates—with	 different	 biodiversity,	
radiation, temperature, water availability, and carbon availabil-
ity regimes—hinge on getting these feedbacks right. The dynamic 
vegetation	models	 in	 the	 recent	generation	of	ESMs	parameterize	
both physiological and ecosystem structural dynamics, but may 
not fully represent structural response to water and heat stress 
(Allen	 et	 al.,	 2015;	 Anderegg	 et	 al.,	 2015; Brodribb et al., 2020; 
Fatichi et al., 2014; Peñuelas et al., 2017; Tei et al., 2017; Trugman 
et al., 2018).

We	propose	using	the	general	emergent	spatial	patterns	seen	in	
this	study	to	benchmark	model	output,	at	least	for	ConUS,	but	also	
likely	more	broadly	across	the	mid-	latitudes.	It	is	also	possible	to	run	
similar	empirical	dynamical	analyses	on	daily	ESM	output,	but	spa-
tial	scaling	effects—particularly	Jensen's	Inequality—would	need	to	
be	dealt	with	 carefully	due	 to	 the	non-	linear	 relationships	 seen	 in	
Figures 1, 4	(Denny,	2017;	Englund	&	Leonardsson,	2008).

4.3  |  Water limitation definition

The negative a4 values in Figure 3 and the negative eigenvalues 
in Figure 4 both seem to present a method for defining a kind of 
water	limitation	based	on	water–carbon	coupling	metrics	(compare,	
e.g., with vegetation cover fraction in Figure S4 and traditional 
definitions	of	100th	parallel	water	 limitation	divides	 in	Seager,	Lis,	
et	al.	(2018)).	Exactly	how	to	interpret	this	definition	is	unclear,	as	is	
whether these forms of water limitation map onto the concept that 
landscapes	may	move	in	and	out	of	water	limitation	over	time	(Akbar	
et al., 2019;	Seager,	Feldman,	et	al.,	2018).	While	there	is	evidence	
that this aridity divide can be largely explained by water metrics 
alone	(Seager,	Lis,	et	al.,	2018),	water–vegetation	interactions	surely	
mediate	 the	 sub-	seasonal	 dynamics	 through	 plant–water	 mecha-
nisms,	and	thus	mediate	the	 long-	term	mean	states	and	dynamics.	
Again,	this	is	an	area	of	ongoing	and	future	research	in	the	land	sur-
face	processes	community	(Akbar	et	al.,	2018; Denissen et al., 2020; 
Feldman et al., 2019; Fu et al., 2022; Zhang et al., 2016).

4.4  |  Stomatal feedbacks muted at 
daily- averaged scale

Of the many coincident processes coupling the water and carbon cy-
cles, one specific feedback that we do not see emerge in these analy-
ses	is	the	direct	stomatal	response	on	daily	timescales.	Specifically,	
one could expect that water availability promotes increases in 
stomatal conductance, increasing both carbon and water fluxes, 
leading to a positive GPP/EF correlation. Instead, we find that all 
estimated	fast	eigenvectors	(Figure 4)	have	negative	slopes,	demon-
strating that EF and GPP are still negatively correlated at these fast 
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timescales. This suggests that leaf area and upregulation dynamics 
dominate stomatal dynamics in this relationship at landscape scale 
(supported	by	 isotopic	 studies;	 see	Guerrieri	 et	 al.,	2019; Mathias 
&	Thomas,	2021),	or	that	the	impacts	of	stomatal	response	require	
observations	at	sub-	daily	timescales.

4.5  |  Plant functions and traits

This approach is agnostic of vegetation classes, plant functional 
types, biome, and plant traits. Plants display incredible variabil-
ity within and across species in linking water and carbon fluxes 
(Chaves	et	al.,	2002).	This	specific	framework	appears	to	be	fairly	
insensitive	 to	 across-	landscape	 ecosystem	 functional	 differ-
ences—apart from how those functional differences collapse onto 
GPP/EF	variables.	We	hypothesize	that	this	implies	that	biomass/
leaf area variables are the dominant drivers of this general pattern. 
Primary	mechanisms	 that	might	drive	plant-	agnostic	patterns	 in-
clude the tight coupling of water availability with surface conduct-
ance	(including	plant	stomatal	control,	but	particularly	 landscape	
stomatal	density),	rapid	physiological	shifts	toward	energy	limita-
tion in response to water inputs, and the scaling of T/ET ratios 
with biomass/leaf area.

The strength of the emergent relationships in this study re-
minds us that the water and carbon cycles are very tightly linked 
as	has	been	demonstrated	numerous	times	(Biederman	et	al.,	2016; 
Huxman	et	al.,	2004;	Knapp	et	al.,	2017;	Short	Gianotti	et	al.,	2019).	
Hypotheses	around	this	 tight	 linkage	 form	the	basis	 for	 the	entire	
sub-	field	of	vegetation	optimality	theory	(Eagleson	&	Tellers,	1982; 
Franklin et al., 2020; Fu et al., 2022; Mrad et al., 2019;	Reynolds	&	
Chen, 1996;	Smith	et	al.,	2019).	In	the	case	of	this	study,	landscape	
coordination	dynamics	may	be	different	from	the	effects	of	single-	
plant optimalities.

4.6  |  Additional considerations

While	we	have	included	multiple	datasets	for	these	analyses,	all	have	
associated errors, which may be systematic. Further analyses at mul-
tiple spatial scales may help to clarify these relationships empirically 
and mechanistically.

When	comparing	 the	 individual	 site	dynamics	 in	Figure 2 with 
the across all sites slow eigenvectors in Figure 4f, it seems clear that 
individual	sites	might	follow	a	more	non-	linear	dynamical	system	and	
that	our	linear	model	is	overly	simplistic.	There	is	tower-	based	evi-
dence	for	this	at	monthly	scales	(Short	Gianotti	&	Entekhabi,	2024),	
but, to the best of our knowledge, no general mechanistic model. 
While	the	general	pattern	across	sites	seems	likely	to	be	mechanis-
tically tied to the slope fields in Figure 4	(e.g.,	landscape	water	use	
efficiency	and	 light	use	efficiency),	 it	 is	difficult	to	design	a	purely	
empirical model to represent the full behavior of a general dynamical 
system	for	all	sites	without	being	over-	parameterized.	This	may	be	
an area of further investigation, particularly using dominant physical 

dynamics along with some degree of empiricism to represent general 
GPP-	EF	patterns.

5  |  CONCLUSIONS

We	 see	 a	 positively	 covarying,	 convex	 relationship	 between	
landscape-	level	 carbon	and	water	 fluxes.	This	appears	 in	both	 (1)	
across-	site	 time	 means	 and	 (2)	 single-	site	 sub-	annual	 temporal	
dynamics. This pattern emerges in multiple independent data-
sets, including remotely sensed GPP proxies paired with surface 
	meteorological	 observations	 (Figure 1);	 individual	 flux	 towers	
(Figures 1, 2);	and	machine-	learning-	based,	observationally	driven	
data	(Figures 1, 4).

After	 rain	events,	 across	datasets,	we	 see	 that	 landscapes	dry	
and	increase	their	carbon	uptake	rate	(negative	correlation)	for	days,	
and then switch to a dominant, slow relationship with timescales of 
weeks to months. On these slower timescales, GPP and EF become 
positively correlated; sufficient drying without precipitation leads to 
drought and loss of local carbon sink.

More	humid	 locations	have	steeper	slow	GPP-	EF	slopes,	as	an	
equivalent	loss	of	moisture	in	a	verdant	location	leads	to	a	larger	ab-
solute loss of biomass or photosynthetic capacity than in a scarcely 
vegetated landscape.

While	the	spatial	and	temporal	patterns	are	emergent,	an	intu-
itive, hypothetical pathway is that excess water availability at the 
landscape-	level	spurs	 increasing	leaf	allocation	to	reduce	light	 lim-
itation. This could be at the plant level, or simply at the scale of land-
scape growth and reproductive success. Increased photosynthetic 
capacity in turn increases GPP and transpiration, decreasing water 
availability.

We	 hypothesize	 that	 this	 relationship	 may	 be	 radically	 dif-
ferent	 for	 sites	 experiencing	 major	 disturbance	 events	 (Brodribb	
et al., 2020; Peterson et al., 2021).	Even	 if	 there	are	generalizable	
processes	stabilizing	carbon/water	dynamics	at	sub-	seasonal	times-
cales, they might or might not remain coupled on the successional 
and	 coordination	 timescales	 that	 control	 biogeography.	 At	 the	
proper time and disturbance scales, however, the relationships 
shown in this study could help to guide projections of natural and 
managed ecosystem behavior, and the response of landscapes to 
management practices and climate change mitigation actions.

Many	 Earth	 System	Models	 fail	 to	 capture	 the	 observed	 spa-
tial patterns, likely due to insufficient coupling schemes between 
growth, phenology, water availability, and evapotranspiration. This 
implies underlying problems in mechanistic representation of the 
terrestrial water and carbon cycles, which could significantly impact 
the results of carbon, water, and energy budgets in forward runs of 
individual models and the CMIP6 ensemble.

At	 the	 basic	 science	 level,	 it	 is	 empirically	 tempting	 to	 view	
Figure 4f	as	a	non-	linear	attractor	over	which	diverse	landscapes	
appear to evolve. Minor disturbance—including individual rain 
events—pushes sites away from this curve; they move back toward 
the curve over days, and then perhaps trace its path slowly until 
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the next rain event. This is a very simple representation of the in-
tegrated effects of many complex processes which we currently 
struggle	to	capture	at	 large	scales.	A	theoretically	derived	expla-
nation for these empirical patterns—if indeed they hold—would 
greatly	 assist	 in	 constraining	 global	 water–carbon	 feedbacks	 in	
models and forecasts, as well as our understanding of the stability 
of	the	broader	Earth	System.

AUTHOR CONTRIBUTIONS
Daniel J. Short Gianotti:	 Conceptualization;	 data	 curation;	 formal	
analysis; investigation; methodology; project administration; vali-
dation;	 visualization;	writing	–	original	 draft;	writing	–	 review	and	
editing. Dara Entekhabi:	 Conceptualization;	 methodology;	 project	
administration;	 resources;	 supervision;	 writing	 –	 review	 and	 edit-
ing. Kaighin A. McColl:	Methodology;	writing	–	review	and	editing.	
Andrew F. Feldman:	 Methodology;	 writing	 –	 review	 and	 editing.	
Xiangtao Xu:	Methodology;	writing	–	review	and	editing.

FUNDING INFORMATION
NASA	(Jet	Propulsion	Laboratory/California	Institute	of	Technology	
subcontract	1,510,842	to	the	Massachusetts	Institute	of	Technology)	
partially	funded	DJSG,	AFF,a	and	DE.

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflict of interest to declare.

DATA AVAIL ABILIT Y S TATEMENT
The data that support the findings of this study and that are used 
to generate the included figures are openly available in Zenodo re-
pository	 13,144,427	 (Short	 Gianotti,	 2024)	 at	 https:// doi. org/ 10. 
5281/	zenodo.	13144427. These data were derived from the follow-
ing resources, all in the public domain. Gridded precipitation data 
from the Climate Prediction Center are available through the CPC 
FTP	 server	 (ftp://	ftp.	cpc.	ncep.	noaa.	gov/	precip/	CPC_	UNI_	PRCP/	
GAUGE_	CONUS/		).	 FluxCom	 data	 are	 available	 from	 the	 FluxCom	
initiative	(http:// www. fluxc om. org)	from	the	data	portal	of	the	Max	
Plank	Institute	for	Biogeochemistry	(https://	www.	bgc-		jena.	mpg.	de/	
geodb/		proje	cts/	Home.	php).	MODIS	 GPP,	 LAI,	 and	 landcover	 data	
are	available	from	the	NASA	EOSDIS	Land	Processes	DAAC	(https:// 
lpdaac. usgs. gov).	 GOME-	2	 SIF	 data	 are	 available	 NASA	 Goddard	
Space	 Flight	 Center	 (https:// avdc. gsfc. nasa. gov/ pub/ data/ satel 
lite/ MetOp/  GOME_F/ ).	Weather	station	data	driving	the	ETRHEQ	
method	are	available	from	the	National	Centers	for	Environmental	
Information	 (https://	www.	ncei.	noaa.	gov/	access/	search/	data-		
search/	globa	l-		hourly).	 MERRA-	2	 radiation	 data	 are	 available	 from	
the	Goddard	Earth	Sciences	Data	and	Information	Services	Center	
portal	(https:// disc. gsfc. nasa. gov/ ).	CMIP	6	model	output	are	avail-
able	from	the	World	Climate	Research	Program	Earth	System	Grid	
Federation	portal	(https://	esgf-		node.	llnl.	gov/	proje	cts/	cmip6/		).	Eddy	
covariance	 data	 are	 available	 from	 FLUXNET	 (https:// fluxn et. org/ 
data/	fluxn	et201	5-		datas	et/	),	 and	 AmeriFlux	 (https:// ameri flux. lbl. 
gov/	data/	flux-		data-		produ	cts/	).	 Individual	DOIs	 for	 every	 eddy	 co-
variance	site's	data	are	listed	in	full	in	Supplemental Table S2.	SMAP	

soil	moisture	data	are	available	from	the	National	Snow	and	Ice	Data	
Center	(https://	nsidc.	org/	data/	smap/	smap-		data.	html).

ORCID
Daniel J. Short Gianotti  https://orcid.org/0000-0003-4891-2474 
Kaighin A. McColl  https://orcid.org/0000-0001-9201-6760 
Andrew F. Feldman  https://orcid.org/0000-0003-1547-6995 
Xiangtao Xu  https://orcid.org/0000-0002-9402-9474 
Dara Entekhabi  https://orcid.org/0000-0002-8362-4761 

R E FE R E N C E S
Akbar,	R.,	 Short,	D.	 J.,	Gianotti,	K.	A.	M.,	Haghighi,	E.,	 Salvucci,	G.	D.,	

Entekhabi,	 D.,	 Short	 Gianotti,	 D.	 J.,	 McColl,	 K.	 A.,	 Haghighi,	 E.,	
Salvucci,	G.	D.,	&	Entekhabi,	D.	(2018).	Estimation	of	landscape	soil	
water losses from satellite observations of soil moisture. Journal of 
Hydrometeorology, 19(5),	 871–889.	 https://	doi.	org/	10.	1175/	JHM-		
D-		17-		0200.	1

Akbar,	R.,	Short	Gianotti,	D.	J.,	Salvucci,	G.	D.,	&	Entekhabi,	D.	 (2019).	
Mapped hydroclimatology of evapotranspiration and drainage 
runoff	using	SMAP	brightness	temperature	observations	and	pre-
cipitation Information. Water Resources Research, 55,	 3391–3413.	
https://	doi.	org/	10.	1029/	2018W	R024459

Allen,	C.	D.,	Breshears,	D.	D.,	Mcdowell,	N.	G.,	Allen,	C.,	Breshears,	D.	
D.,	&	Mcdowell,	N.	G.	(2015).	On	underestimation	of	global	vulner-
ability	to	tree	mortality	and	forest	die-	off	from	hotter	drought	 in	
the	Anthropocene.	Ecosphere, 6(8),	1–55.	https://	doi.	org/	10.	1890/	
ES15-		00203.	1

Anderegg,	W.	 R.	 L.,	 Schwalm,	 C.,	 Biondi,	 F.,	 Camarero,	 J.	 J.,	 Koch,	G.,	
Litvak,	M.,	 Ogle,	 K.,	 Shaw,	 J.	 D.,	 Shevliakova,	 E.,	Williams,	 A.	 P.,	
Wolf,	A.,	Ziaco,	E.,	&	Pacala,	S.	(2015).	Pervasive	drought	legacies	
in forest ecosystems and their implications for carbon cycle mod-
els. Science, 349(6247),	528–532.	https:// doi. org/ 10. 1126/ scien ce. 
aab1833

Babst,	F.,	Bouriaud,	O.,	Poulter,	B.,	Trouet,	V.,	Girardin,	M.	P.,	&	Frank,	
D.	C.	(2019).	Twentieth	century	redistribution	in	climatic	drivers	of	
global tree growth. Science Advances, 5(1),	1–10.	https:// doi. org/ 10. 
1126/ sciadv. aat4313

Bartlett,	M.	K.,	Klein,	T.,	 Jansen,	S.,	Choat,	B.,	&	Sack,	 L.	 (2016).	The	
correlations	and	sequence	of	plant	stomatal,	hydraulic,	and	wilt-
ing responses to drought. Proceedings of the National Academy of 
Sciences, 113(46),	 13098–13103.	 https:// doi. org/ 10. 1073/ pnas. 
16040	88113	

Biederman,	J.	A.,	Scott,	R.	L.,	Goulden,	M.	L.,	Vargas,	R.,	Litvak,	M.	E.,	
Kolb,	T.	E.,	Yepez,	E.	A.,	Oechel,	W.	C.,	Blanken,	P.	D.,	Bell,	T.	W.,	
Garatuza-	Payan,	 J.,	Maurer,	G.	E.,	Dore,	S.,	&	Burns,	S.	P.	 (2016).	
Terrestrial carbon balance in a drier world: The effects of water 
availability	in	southwestern	North	America.	Global Change Biology, 
22(5),	1867–1879.	https:// doi. org/ 10. 1111/ gcb. 13222 

Brodribb,	T.	J.,	Powers,	J.,	Cochard,	H.,	&	Choat,	B.	(2020).	Hanging	by	a	
thread? Forests and drought. Science, 368(6488),	261–266.	https:// 
doi. org/ 10. 1126/ scien ce. aat7631

Brubaker,	K.	L.,	&	Entekhabi,	D.	(1996).	Analysis	of	feedback	mechanisms	
in	 land-	atmosphere	 interaction.	Water Resources Research, 32(5),	
1343–1357.	https://	doi.	org/	10.	1029/	96WR0	0005

Chaves,	M.	M.,	Pereira,	J.	S.,	Maroco,	J.,	Rodrigues,	M.	L.,	Ricardo,	C.	P.	
P.,	Osório,	M.	L.,	Carvalho,	I.,	Faria,	T.,	&	Pinheiro,	C.	(2002).	How	
plants cope with water stress in the field? Photosynthesis and 
Growth. Annals of Botany, 89(7),	907–916.	https:// doi. org/ 10. 1093/ 
AOB/	MCF105

Chen,	M.,	Shi,	W.,	Xie,	P.,	Silva,	V.	B.	S.	S.,	Kousky,	V.	E.,	Higgins,	R.	W.,	
&	Janowiak,	J.	E.	(2008).	Assessing	objective	techniques	for	gauge-	
based analyses of global daily precipitation. Journal of Geophysical 

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17463, W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.13144427
https://doi.org/10.5281/zenodo.13144427
ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_CONUS/
ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_CONUS/
http://www.fluxcom.org
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://lpdaac.usgs.gov
https://lpdaac.usgs.gov
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/
https://www.ncei.noaa.gov/access/search/data-search/global-hourly
https://www.ncei.noaa.gov/access/search/data-search/global-hourly
https://disc.gsfc.nasa.gov/
https://esgf-node.llnl.gov/projects/cmip6/
https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/
https://ameriflux.lbl.gov/data/flux-data-products/
https://ameriflux.lbl.gov/data/flux-data-products/
https://nsidc.org/data/smap/smap-data.html
https://orcid.org/0000-0003-4891-2474
https://orcid.org/0000-0003-4891-2474
https://orcid.org/0000-0001-9201-6760
https://orcid.org/0000-0001-9201-6760
https://orcid.org/0000-0003-1547-6995
https://orcid.org/0000-0003-1547-6995
https://orcid.org/0000-0002-9402-9474
https://orcid.org/0000-0002-9402-9474
https://orcid.org/0000-0002-8362-4761
https://orcid.org/0000-0002-8362-4761
https://doi.org/10.1175/JHM-D-17-0200.1
https://doi.org/10.1175/JHM-D-17-0200.1
https://doi.org/10.1029/2018WR024459
https://doi.org/10.1890/ES15-00203.1
https://doi.org/10.1890/ES15-00203.1
https://doi.org/10.1126/science.aab1833
https://doi.org/10.1126/science.aab1833
https://doi.org/10.1126/sciadv.aat4313
https://doi.org/10.1126/sciadv.aat4313
https://doi.org/10.1073/pnas.1604088113
https://doi.org/10.1073/pnas.1604088113
https://doi.org/10.1111/gcb.13222
https://doi.org/10.1126/science.aat7631
https://doi.org/10.1126/science.aat7631
https://doi.org/10.1029/96WR00005
https://doi.org/10.1093/AOB/MCF105
https://doi.org/10.1093/AOB/MCF105


    |  15 of 18SHORT GIANOTTI et al.

Research- Atmospheres, 113(4),	1–13.	https://	doi.	org/	10.	1029/	2007J	
D009132

Chu,	 H.,	 Christianson,	 D.	 S.,	 Cheah,	 Y.	W.,	 Pastorello,	 G.,	 O'Brien,	 F.,	
Geden,	J.,	Ngo,	S.	T.,	Hollowgrass,	R.,	Leibowitz,	K.,	Beekwilder,	N.	
F.,	Sandesh,	M.,	Dengel,	S.,	Chan,	S.	W.,	Santos,	A.,	Delwiche,	K.,	
Yi,	K.,	Buechner,	C.,	Baldocchi,	D.,	Papale,	D.,	…	Torn,	M.	S.	(2023).	
AmeriFlux	BASE	data	pipeline	to	support	network	growth	and	data	
sharing. Scientific Data, 10(1),	1–13.	https://	doi.	org/	10.	1038/	s4159	
7-		023-		02531	-		2

Claeys,	 H.,	 &	 Inzé,	 D.	 (2013).	 The	 agony	 of	 choice:	 How	 plants	 bal-
ance	 growth	 and	 survival	 under	 water-	limiting	 conditions.	 Plant 
Physiology, 162(4),	 1768–1779.	 https:// doi. org/ 10. 1104/ PP. 113. 
220921

Cook,	B.	D.,	Davis,	K.	J.,	Wang,	W.,	Desai,	A.,	Berger,	B.	W.,	Teclaw,	R.	
M.,	Martin,	J.	G.,	Bolstad,	P.	V.,	Bakwin,	P.	S.,	Yi,	C.,	&	Heilman,	W.	
(2004).	Carbon	exchange	and	venting	anomalies	 in	an	upland	de-
ciduous	forest	in	northern	Wisconsin,	USA.	Agricultural and Forest 
Meteorology, 126(3–4),	271–295.	https://	doi.	org/	10.	1016/J.	AGRFO	
RMET.	2004.	06.	008

De	Frenne,	P.,	Lenoir,	J.,	Luoto,	M.,	Scheffers,	B.	R.,	Zellweger,	F.,	Aalto,	
J.,	Ashcroft,	M.	B.,	Christiansen,	D.	M.,	Decocq,	G.,	De	Pauw,	K.,	
Govaert,	S.,	Greiser,	C.,	Gril,	E.,	Hampe,	A.,	 Jucker,	T.,	Klinges,	D.	
H.,	 Koelemeijer,	 I.	 A.,	 Lembrechts,	 J.	 J.,	 Marrec,	 R.,	 …	 Hylander,	
K.	 (2021).	 Forest	microclimates	 and	 climate	 change:	 Importance,	
drivers and future research agenda. Global Change Biology, 27(11),	
2279–2297.	https://	doi.	org/	10.	1111/	GCB.	15569	

Denissen,	 J.	 M.	 C.,	 Teuling,	 A.	 J.,	 Reichstein,	 M.,	 &	 Orth,	 R.	 (2020).	
Critical soil moisture derived from satellite observations over 
Europe. Journal of Geophysical Research: Atmospheres, 125(6),	
e2019JD031672.	https://	doi.	org/	10.	1029/	2019J	D031672

Denny,	M.	(2017).	The	fallacy	of	the	average:	On	the	ubiquity,	utility	and	
continuing	 novelty	 of	 Jensen's	 inequality.	 Journal of Experimental 
Biology, 220(2),	139–146.	https://	doi.	org/	10.	1242/	JEB.	140368

Dirmeyer,	 P.	 A.,	 Zeng,	 F.	 J.,	 Ducharne,	 A.,	Morrill,	 J.	 C.,	 Koster,	 R.	 D.,	
Dirmeyer,	P.	A.,	Zeng,	F.	 J.,	Ducharne,	A.,	Morrill,	 J.	C.,	&	Koster,	
R.	D.	(2000).	The	sensitivity	of	surface	fluxes	to	soil	water	content	
in three land surface schemes. Journal of Hydrometeorology, 1(2),	
121–134.	 https://	doi.	org/	10.	1175/	1525-		7541(2000)	001< 0121: 
TSOSF	T> 2.0. CO; 2

Dong,	J.,	Akbar,	R.,	Short	Gianotti,	D.	J.,	Feldman,	A.	F.,	Crow,	W.	T.,	&	
Entekhabi,	D.	 (2022).	Can	surface	soil	moisture	 Information	 iden-
tify evapotranspiration regime transitions? Geophysical Research 
Letters, 49(7),	 e2021GL097697.	 https:// doi. org/ 10. 1029/ 2021G 
L097697

D'Orangeville,	 L.,	Maxwell,	 J.,	 Kneeshaw,	D.,	 Pederson,	N.,	Duchesne,	
L.,	Logan,	T.,	Houle,	D.,	Arseneault,	D.,	Beier,	C.	M.,	Bishop,	D.	A.,	
Druckenbrod,	D.,	Fraver,	S.,	Girard,	F.,	Halman,	J.,	Hansen,	C.,	Hart,	
J.	L.,	Hartmann,	H.,	Kaye,	M.,	Leblanc,	D.,	…	Phillips,	R.	P.	 (2018).	
Drought timing and local climate determine the sensitivity of east-
ern temperate forests to drought. Global Change Biology, 24(6),	
2339–2351.	https:// doi. org/ 10. 1111/ GCB. 14096 

dos	Santos,	T.,	Keppel-	Aleks,	G.,	De	Roo,	R.,	&	Steiner,	A.	L.	(2021).	Can	
land surface models capture the observed soil moisture control of 
water	 and	 carbon	 fluxes	 in	 temperate-	to-	boreal	 forests?	 Journal 
of Geophysical Research: Biogeosciences, 126(4),	 e2020JG005999.	
https://	doi.	org/	10.	1029/	2020J	G005999

Eagleson,	 P.	 S.,	 &	 Tellers,	 T.	 E.	 (1982).	 Ecological	 optimality	 in	 water-	
limited	 soil-	vegetation	 systems	 2.	 Tests	 and	 applications.	Water 
Resources Research, 18(2),	 341–354.	 https:// doi. org/ 10. 1029/ 
WR018	i002p	00341	

Englund,	 G.,	 &	 Leonardsson,	 K.	 (2008).	 Scaling	 up	 the	 functional	 re-
sponse for spatially heterogeneous systems. Ecology Letters, 11(5),	
440–449.	https://	doi.	org/	10.	1111/J.	1461-		0248.	2008.	01159.	X

Eyring,	V.,	Bony,	S.,	Meehl,	G.	A.,	Senior,	C.	A.,	Stevens,	B.,	Stouffer,	R.	J.,	
&	Taylor,	K.	E.	(2016).	Overview	of	the	coupled	model	intercompar-
ison	project	phase	6	(CMIP6)	experimental	design	and	organization.	

Geoscientific Model Development, 9,	1937–1958.	https:// doi. org/ 10. 
5194/	gmd-		9-		1937-		2016

Fatichi,	S.,	Leuzinger,	S.,	&	Körner,	C.	(2014).	Moving	beyond	photosyn-
thesis:	 From	 carbon	 source	 to	 sink-	driven	 vegetation	 modeling.	
New Phytologist, 201(4),	1086–1095.	https://	doi.	org/	10.	1111/	NPH.	
12614 

Feldman,	A.	F.,	Chulakadabba,	A.,	Short	Gianotti,	D.	J.,	&	Entekhabi,	D.	
(2021).	 Landscape-	scale	plant	water	 content	 and	carbon	 flux	be-
havior following moisture pulses: From dryland to mesic environ-
ments. Water Resources Research, 57(1),	 1–20.	 https:// doi. org/ 10. 
1029/	2020W	R027592

Feldman,	 A.	 F.,	 Short	 Gianotti,	 D.	 J.,	 Konings,	 A.	 G.,	 Gentine,	 P.,	 &	
Entekhabi,	 D.	 (2021).	 Patterns	 of	 plant	 rehydration	 and	 growth	
following pulses of soil moisture availability. Biogeosciences, 18(3),	
831–847.	https://	doi.	org/	10.	5194/	BG-		18-		831-		2021

Feldman,	A.	F.,	Short	Gianotti,	D.	J.,	Konings,	A.	G.,	McColl,	K.	A.,	Akbar,	
R.,	Salvucci,	G.	D.,	&	Entekhabi,	D.	(2018).	Moisture	pulse-	reserve	
in	the	soil-	plant	continuum	observed	across	biomes.	Nature Plants, 
4(12),	1026–1033.	https://	doi.	org/	10.	1038/	s4147	7-		018-		0304-		9

Feldman,	A.	F.,	Short	Gianotti,	D.	J.,	Trigo,	I.	F.,	Salvucci,	G.	D.,	&	Entekhabi,	
D.	(2019).	Satellite-	based	assessment	of	land	surface	energy	parti-
tioning–soil	moisture	relationships	and	effects	of	confounding	vari-
ables. Water Resources Research, 55(12),	10657–10677.	https:// doi. 
org/	10.	1029/	2019W	R025874

Feldman,	 A.	 F.,	 Short	 Gianotti,	 D.	 J.,	 Trigo,	 I.	 F.,	 Salvucci,	 G.	 D.,	 &	
Entekhabi,	 D.	 (2022).	 Observed	 landscape	 responsiveness	 to	 cli-
mate forcing. Water Resources Research, 58(1),	 e2021WR030316.	
https://	doi.	org/	10.	1029/	2021W	R030316

Franklin,	 O.,	 Harrison,	 S.	 P.,	 Dewar,	 R.,	 Farrior,	 C.	 E.,	 Brännström,	 Å.,	
Dieckmann,	 U.,	 Pietsch,	 S.,	 Falster,	 D.,	 Cramer,	 W.,	 Loreau,	 M.,	
Wang,	 H.,	Mäkelä,	 A.,	 Rebel,	 K.	 T.,	Meron,	 E.,	 Schymanski,	 S.	 J.,	
Rovenskaya,	E.,	Stocker,	B.	D.,	Zaehle,	S.,	Manzoni,	S.,	…	Prentice,	
I.	C.	(2020).	Organizing	principles	for	vegetation	dynamics.	Nature 
Plants, 6(5),	444–453.	https://	doi.	org/	10.	1038/	s4147	7-		020-		0655-		x

Fu,	Z.,	Ciais,	P.,	Feldman,	A.	F.,	Gentine,	P.,	Makowski,	D.,	Prentice,	I.	C.,	
Stoy,	P.	C.,	Bastos,	A.,	&	Wigneron,	J.	P.	(2022).	Critical	soil	mois-
ture thresholds of plant water stress in terrestrial ecosystems. 
Science Advances, 8(44),	 7827.	 https://	doi.	org/	10.	1126/	SCIADV.	
ABQ7827

Gentine,	 P.,	 Entekhabi,	 D.,	 Chehbouni,	 A.,	 Boulet,	 G.,	 &	 Duchemin,	
B.	 (2007).	 Analysis	 of	 evaporative	 fraction	 diurnal	 behaviour.	
Agricultural and Forest Meteorology, 143(1),	13–29.	https:// doi. org/ 
10. 1016/j. agrfo rmet. 2006. 11. 002

Green,	J.	K.,	Konings,	A.	G.,	Alemohammad,	S.	H.,	Berry,	J.,	Entekhabi,	D.,	
Kolassa,	J.,	Lee,	J.	E.,	&	Gentine,	P.	(2017).	Regionally	strong	feed-
backs between the atmosphere and terrestrial biosphere. Nature 
Geoscience, 10(6),	410–414.	https://	doi.	org/	10.	1038/	ngeo2957

Guerrieri,	R.,	Belmecheri,	S.,	Ollinger,	S.	V.,	Asbjornsen,	H.,	Jennings,	K.,	
Xiao,	J.,	Stocker,	B.	D.,	Martin,	M.,	Hollinger,	D.	Y.,	Bracho-	Garrillo,	
R.,	 Clark,	 K.,	Dore,	 S.,	 Kolb,	 T.,	William	Munger,	 J.,	Novick,	 K.,	 &	
Richardson,	A.	D.	 (2019).	Disentangling	 the	 role	 of	 photosynthe-
sis	and	stomatal	conductance	on	rising	forest	water-	use	efficiency.	
Proceedings of the National Academy of Sciences of the United States 
of America, 116(34),	16909–16914.	https://	doi.	org/	10.	1073/	PNAS.	
19059	12116	

Haghighi,	E.,	Short	Gianotti,	D.	J.,	Akbar,	R.,	Salvucci,	G.	D.,	&	Entekhabi,	
D.	 (2018).	 Soil	 and	 atmospheric	 controls	 on	 the	 land	 surface	 en-
ergy	balance:	A	generalized	framework	for	distinguishing	moisture-	
limited	 and	 energy-	limited	 evaporation	 regimes.	Water Resources 
Research, 54(3),	 1831–1851.	 https://	doi.	org/	10.	1002/	2017W	
R021729

Harrison,	 S.	 P.,	 Cramer,	 W.,	 Franklin,	 O.,	 Prentice,	 I.	 C.,	 Wang,	 H.,	
Brännström,	Å.,	de	Boer,	H.,	Dieckmann,	U.,	Joshi,	J.,	Keenan,	T.	F.,	
Lavergne,	A.,	Manzoni,	S.,	Mengoli,	G.,	Morfopoulos,	C.,	Peñuelas,	
J.,	Pietsch,	S.,	Rebel,	K.	T.,	Ryu,	Y.,	Smith,	N.	G.,	…	Wright,	I.	J.	(2021).	
Eco-	evolutionary	optimality	as	a	means	to	improve	vegetation	and	

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17463, W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1029/2007JD009132
https://doi.org/10.1029/2007JD009132
https://doi.org/10.1038/s41597-023-02531-2
https://doi.org/10.1038/s41597-023-02531-2
https://doi.org/10.1104/PP.113.220921
https://doi.org/10.1104/PP.113.220921
https://doi.org/10.1016/J.AGRFORMET.2004.06.008
https://doi.org/10.1016/J.AGRFORMET.2004.06.008
https://doi.org/10.1111/GCB.15569
https://doi.org/10.1029/2019JD031672
https://doi.org/10.1242/JEB.140368
https://doi.org/10.1175/1525-7541(2000)001%3C0121:TSOSFT%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2000)001%3C0121:TSOSFT%3E2.0.CO;2
https://doi.org/10.1029/2021GL097697
https://doi.org/10.1029/2021GL097697
https://doi.org/10.1111/GCB.14096
https://doi.org/10.1029/2020JG005999
https://doi.org/10.1029/WR018i002p00341
https://doi.org/10.1029/WR018i002p00341
https://doi.org/10.1111/J.1461-0248.2008.01159.X
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1111/NPH.12614
https://doi.org/10.1111/NPH.12614
https://doi.org/10.1029/2020WR027592
https://doi.org/10.1029/2020WR027592
https://doi.org/10.5194/BG-18-831-2021
https://doi.org/10.1038/s41477-018-0304-9
https://doi.org/10.1029/2019WR025874
https://doi.org/10.1029/2019WR025874
https://doi.org/10.1029/2021WR030316
https://doi.org/10.1038/s41477-020-0655-x
https://doi.org/10.1126/SCIADV.ABQ7827
https://doi.org/10.1126/SCIADV.ABQ7827
https://doi.org/10.1016/j.agrformet.2006.11.002
https://doi.org/10.1016/j.agrformet.2006.11.002
https://doi.org/10.1038/ngeo2957
https://doi.org/10.1073/PNAS.1905912116
https://doi.org/10.1073/PNAS.1905912116
https://doi.org/10.1002/2017WR021729
https://doi.org/10.1002/2017WR021729


16 of 18  |     SHORT GIANOTTI et al.

land-	surface	models.	New Phytologist, 231(6),	2125–2141.	https:// 
doi.	org/	10.	1111/	NPH.	17558	

Hong,	T.,	Dong,	W.,	Ji,	D.,	Dai,	T.,	Yang,	S.,	&	Wei,	T.	(2019).	The	response	
of vegetation to rising CO2 concentrations plays an important role 
in future changes in the hydrological cycle. Theoretical and Applied 
Climatology, 136(1–2),	 135–144.	 https:// doi. org/ 10. 1007/ s0070 
4-		018-		2476-		7

Humphrey,	V.,	Berg,	A.,	Ciais,	 P.,	Gentine,	 P.,	 Jung,	M.,	 Reichstein,	M.,	
Seneviratne,	 S.	 I.,	&	Frankenberg,	C.	 (2021).	 Soil	moisture–atmo-
sphere feedback dominates land carbon uptake variability. Nature, 
592(7852),	65–69.	https://	doi.	org/	10.	1038/	s4158	6-		021-		03325	-		5

Huxman,	T.	E.,	Smith,	M.	D.,	Fay,	P.	A.,	Knapp,	A.	K.,	Shaw,	M.	R.,	Loik,	M.	
E.,	Smith,	S.	D.,	Tissue,	D.	T.,	Zak,	J.	C.,	Weltzin,	J.	F.,	Pockman,	W.	
T.,	Sala,	O.	E.,	Haddad,	B.	M.,	Harte,	J.,	Kock,	G.	W.,	Schwinning,	S.,	
Small,	E.	E.,	&	Williams,	D.	G.	(2004).	Convergence	across	biomes	
to	a	common	rain-	use	efficiency.	Nature, 429,	651–654.	https:// doi. 
org/	10.	1038/	natur	e02597.	1

Jiao,	W.,	Wang,	L.,	Smith,	W.	K.,	Chang,	Q.,	Wang,	H.,	&	D'Odorico,	P.	
(2021).	Observed	increasing	water	constraint	on	vegetation	growth	
over the last three decades. Nature Communications, 12(1),	 1–9.	
https://	doi.	org/	10.	1038/	s4146	7-		021-		24016	-		9

Joiner,	J.,	Guanter,	L.,	Lindstrot,	R.,	Voigt,	M.,	Vasilkov,	A.	P.,	Middleton,	
E.	 M.,	 Huemmrich,	 K.	 F.,	 Yoshida,	 Y.,	 &	 Frankenberg,	 C.	 (2013).	
Global monitoring of terrestrial chlorophyll fluorescence from 
moderate-	spectral-	resolution	 near-	infrared	 satellite	 measure-
ments:	 Methodology,	 simulations,	 and	 application	 to	 GOME-	2.	
Atmospheric Measurement Techniques, 6,	 2803–2823.	 https:// doi. 
org/	10.	5194/	amt-		6-		2803-		2013

Jonard,	F.,	De	Cannière,	S.,	Brüggemann,	N.,	Gentine,	P.,	Short	Gianotti,	
D.	J.,	Lobet,	G.,	Miralles,	D.	G.,	Montzka,	C.,	Pagán,	B.	R.,	Rascher,	
U.,	&	Vereecken,	H.	(2020).	Value	of	sun-	induced	chlorophyll	fluo-
rescence	for	quantifying	hydrological	states	and	fluxes:	Current	sta-
tus and challenges. Agricultural and Forest Meteorology, 291(June),	
108088.	https://	doi.	org/	10.	1016/j.	agrfo	rmet.	2020.	108088

Jung,	M.,	&	FLUXCOM	Team.	(2016).	FLUXCOM (RS+METEO) global land 
carbon fluxes using CRUNCEP climate data. Max Planck Institute 
for Biogeochemistry. https://	doi.	org/	10.	17871/		FLUXC	OM_	RS_	
METEO_	CRUNC	EPv6_	1980_	2013_	v1

Jung,	M.,	Koirala,	S.,	Weber,	U.,	Ichii,	K.,	Gans,	F.,	Camps-	Valls,	G.,	Papale,	
D.,	Schwalm,	C.,	Tramontana,	G.,	&	Reichstein,	M.	(2018).	FLUXCOM 
global land energy fluxes. Max Planck Institute for Biogeochemistry. 
https://	doi.	org/	10.	17871/		FLUXC	OM_	Energ	yFlux	es_	v1

Jung,	 M.,	 Koirala,	 S.,	 Weber,	 U.,	 Ichii,	 K.,	 Gans,	 F.,	 Camps-	Valls,	 G.,	
Papale,	D.,	Schwalm,	C.,	Tramontana,	G.,	&	Reichstein,	M.	 (2019).	
The	 FLUXCOM	 ensemble	 of	 global	 land-	atmosphere	 energy	
fluxes. Scientific Data, 6(1),	 1–14.	 https://	doi.	org/	10.	1038/	s4159	
7-		019-		0076-		8

Jung,	 M.,	 Schwalm,	 C.,	 Migliavacca,	 M.,	 Walther,	 S.,	 Camps-	Valls,	 G.,	
Koirala,	S.,	Anthoni,	P.,	Besnard,	S.,	Bodesheim,	P.,	Carvalhais,	N.,	
Chevallier,	 F.,	Gans,	F.,	Goll,	D.	S.,	Haverd,	V.,	Köhler,	P.,	 Ichii,	K.,	
Jain,	A.	K.,	Liu,	J.,	Lombardozzi,	D.,	…	Reichstein,	M.	(2020).	Scaling	
carbon	fluxes	 from	eddy	covariance	sites	 to	globe:	Synthesis	and	
evaluation of the FLUXCOM approach. Biogeosciences, 17,	1343–
1365.	https://	doi.	org/	10.	5194/	bg-		17-		1343-		2020

Katul,	G.	G.,	 Palmroth,	 S.,	&	Oren,	R.	 (2009).	 Leaf	 stomatal	 responses	
to vapour pressure deficit under current and CO2-	enriched	atmo-
sphere explained by the economics of gas exchange. Plant, Cell 
and Environment, 32(8),	 968–979.	 https://	doi.	org/	10.	1111/J.	1365-		
3040. 2009. 01977. X

Keenan,	T.	F.,	&	Williams,	C.	A.	(2018).	The	terrestrial	carbon	sink.	Annual 
Review of Environment and Resources, 43,	219–243.	https:// doi. org/ 
10.	1146/	ANNUR	EV-		ENVIR	ON-		10201	7-		030204

Knapp,	A.	K.,	Ciais,	P.,	&	Smith,	M.	D.	 (2017).	Tansley	 insight	 reconcil-
ing inconsistencies in precipitation—Productivity relationships: 
Implications for climate change. New Phytologist, 214,	 41–47.	
https://	doi.	org/	10.	1111/	nph.	14381	

Knauer,	J.,	Zaehle,	S.,	Reichstein,	M.,	Medlyn,	B.	E.,	Forkel,	M.,	Hagemann,	
S.,	&	Werner,	C.	(2017).	The	response	of	ecosystem	water-	use	ef-
ficiency to rising atmospheric CO2	concentrations:	Sensitivity	and	
large-	scale	 biogeochemical	 implications.	 New Phytologist, 213(4),	
1654–1666.	https://	doi.	org/	10.	1111/	nph.	14288	

Kull,	O.	(2002).	Acclimation	of	photosynthesis	in	canopies:	Models	and	
limitations. Oecologia, 133(3),	 267–279.	 https:// doi. org/ 10. 1007/ 
S0044	2-		002-		1042-		1/	METRICS

Lambers,	 H.,	 &	 Oliveira,	 R.	 S.	 (2019).	 Plant	 physiological	 ecology.	 In	
Encyclopedia of ecology, five- volume set	 (3rd	ed.).	Springer.	https:// 
doi.	org/	10.	1016/	B978-		00804	5405-		4.	00819	-		3

Lavergne,	A.,	Graven,	H.,	De	Kauwe,	M.	G.,	Keenan,	T.	F.,	Medlyn,	B.	E.,	
&	Prentice,	I.	C.	(2019).	Observed	and	modelled	historical	trends	in	
the	water-	use	efficiency	of	plants	and	ecosystems.	Global Change 
Biology, 25(7),	2242–2257.	https:// doi. org/ 10. 1111/ GCB. 14634 

Lemordant,	L.,	&	Gentine,	P.	 (2019).	Vegetation	response	to	rising	CO2 
impacts extreme temperatures. Geophysical Research Letters, 46(3),	
1383–1392.	https://	doi.	org/	10.	1029/	2018G	L080238

Liu,	 L.,	Gudmundsson,	 L.,	Hauser,	M.,	Qin,	D.,	 Li,	 S.,	&	 Seneviratne,	 S.	
I.	 (2020).	 Soil	 moisture	 dominates	 dryness	 stress	 on	 ecosystem	
production globally. Nature Communications, 11(1),	1–9.	https:// doi. 
org/	10.	1038/	s4146	7-		020-		18631	-		1

Manandhar,	A.,	Sinclair,	T.	R.,	Rufty,	T.	W.,	&	Ghanem,	M.	E.	(2017).	Leaf	
emergence	(phyllochron	index)	and	leaf	expansion	response	to	soil	
drying in cowpea genotypes. Physiologia Plantarum, 160(2),	 201–
208.	https://	doi.	org/	10.	1111/	PPL.	12544	

Mathias,	 J.	M.,	&	Thomas,	R.	B.	 (2021).	Global	 tree	 intrinsic	water	use	
efficiency is enhanced by increased atmospheric CO2 and mod-
ulated by climate and plant functional types. Proceedings of the 
National Academy of Sciences of the United States of America, 118(7),	
e2014286118.	https://	doi.	org/	10.	1073/	PNAS.	20142	86118	

McColl,	K.	A.,	&	Rigden,	A.	J.	 (2020).	Emergent	simplicity	of	continen-
tal evapotranspiration. Geophysical Research Letters, 47(6),	 1–11.	
https://	doi.	org/	10.	1029/	2020G	L087101

McColl,	K.	A.,	&	Tang,	L.	I.	(2023).	An	analytic	theory	of	near-	surface	rel-
ative humidity over land. Journal of Climate, 1,	1213–1230.	https:// 
doi.	org/	10.	1175/	JCLI-		D-		23-		0342.	1

Mrad,	A.,	Sevanto,	S.,	Domec,	J.-	C.,	Liu,	Y.,	Nakad,	M.,	&	Katul,	G.	(2019).	
A	 dynamic	 optimality	 principle	 for	 water	 use	 strategies	 explains	
Isohydric	 to	 Anisohydric	 plant	 responses	 to	 drought.	 Frontiers in 
Forests and Global Change, 2,	 1–35.	 https://	doi.	org/	10.	3389/	ffgc.	
2019. 00049 

Niinemets,	Ü.,	 Keenan,	 T.	 F.,	 &	Hallik,	 L.	 (2015).	 A	worldwide	 analysis	
of	within-	canopy	variations	in	leaf	structural,	chemical	and	physio-
logical traits across plant functional types. New Phytologist, 205(3),	
973–993.	https://	doi.	org/	10.	1111/	NPH.	13096	

Niu,	S.,	Xing,	X.,	Zhang,	Z.,	Xia,	 J.,	Zhou,	X.,	Song,	B.,	 Li,	 L.,	&	Wan,	S.	
(2011).	Water-	use	efficiency	 in	response	to	climate	change:	From	
leaf to ecosystem in a temperate steppe. Global Change Biology, 
17(2),	 1073–1082.	 https://	doi.	org/	10.	1111/J.	1365-		2486.	2010.	
02280.	X

Pan,	Y.,	Jackson,	R.	B.,	Hollinger,	D.	Y.,	Phillips,	O.	L.,	Nowak,	R.	S.,	Norby,	
R.	 J.,	Oren,	R.,	 Reich,	 P.	B.,	 Lüscher,	A.,	Mueller,	K.	 E.,	Owensby,	
C.,	Birdsey,	R.,	Hom,	J.,	&	Luo,	Y.	(2022).	Contrasting	responses	of	
woody and grassland ecosystems to increased CO2 as water supply 
varies. Nature Ecology & Evolution, 6(3),	 315–323.	https:// doi. org/ 
10.	1038/	s4155	9-		021-		01642	-		6

Pappas,	C.,	Mahecha,	M.	D.,	Frank,	D.	C.,	Babst,	F.,	&	Koutsoyiannis,	D.	
(2017).	Ecosystem	functioning	is	enveloped	by	hydrometeorologi-
cal variability. Nature Ecology & Evolution, 1(9),	1263–1270.	https:// 
doi.	org/	10.	1038/	s4155	9-		017-		0277-		5

Pastorello,	G.,	Trotta,	C.,	Canfora,	E.,	Chu,	H.,	Christianson,	D.,	Cheah,	
Y.-	W.,	Poindexter,	C.,	Chen,	J.,	Elbashandy,	A.,	Humphrey,	M.,	Isaac,	
P.,	Polidori,	D.,	Reichstein,	M.,	Ribeca,	A.,	van	Ingen,	C.,	Vuichard,	
N.,	 Zhang,	 L.,	 Amiro,	 B.,	 Ammann,	 C.,	 …	 Papale,	 D.	 (2020).	 The	
FLUXNET2015	 dataset	 and	 the	ONEFlux	 processing	 pipeline	 for	

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17463, W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/NPH.17558
https://doi.org/10.1111/NPH.17558
https://doi.org/10.1007/s00704-018-2476-7
https://doi.org/10.1007/s00704-018-2476-7
https://doi.org/10.1038/s41586-021-03325-5
https://doi.org/10.1038/nature02597.1
https://doi.org/10.1038/nature02597.1
https://doi.org/10.1038/s41467-021-24016-9
https://doi.org/10.5194/amt-6-2803-2013
https://doi.org/10.5194/amt-6-2803-2013
https://doi.org/10.1016/j.agrformet.2020.108088
https://doi.org/10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1
https://doi.org/10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1
https://doi.org/10.17871/FLUXCOM_EnergyFluxes_v1
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.1111/J.1365-3040.2009.01977.X
https://doi.org/10.1111/J.1365-3040.2009.01977.X
https://doi.org/10.1146/ANNUREV-ENVIRON-102017-030204
https://doi.org/10.1146/ANNUREV-ENVIRON-102017-030204
https://doi.org/10.1111/nph.14381
https://doi.org/10.1111/nph.14288
https://doi.org/10.1007/S00442-002-1042-1/METRICS
https://doi.org/10.1007/S00442-002-1042-1/METRICS
https://doi.org/10.1016/B978-008045405-4.00819-3
https://doi.org/10.1016/B978-008045405-4.00819-3
https://doi.org/10.1111/GCB.14634
https://doi.org/10.1029/2018GL080238
https://doi.org/10.1038/s41467-020-18631-1
https://doi.org/10.1038/s41467-020-18631-1
https://doi.org/10.1111/PPL.12544
https://doi.org/10.1073/PNAS.2014286118
https://doi.org/10.1029/2020GL087101
https://doi.org/10.1175/JCLI-D-23-0342.1
https://doi.org/10.1175/JCLI-D-23-0342.1
https://doi.org/10.3389/ffgc.2019.00049
https://doi.org/10.3389/ffgc.2019.00049
https://doi.org/10.1111/NPH.13096
https://doi.org/10.1111/J.1365-2486.2010.02280.X
https://doi.org/10.1111/J.1365-2486.2010.02280.X
https://doi.org/10.1038/s41559-021-01642-6
https://doi.org/10.1038/s41559-021-01642-6
https://doi.org/10.1038/s41559-017-0277-5
https://doi.org/10.1038/s41559-017-0277-5


    |  17 of 18SHORT GIANOTTI et al.

eddy covariance data. Scientific Data 2020, 7(1),	1–27.	https:// doi. 
org/	10.	1038/	s4159	7-		020-		0534-		3

Peñuelas,	J.,	Ciais,	P.,	Canadell,	J.	G.,	Janssens,	I.	A.,	Fernández-	Martínez,	
M.,	Carnicer,	 J.,	Obersteiner,	M.,	Piao,	S.,	Vautard,	R.,	&	Sardans,	
J.	 (2017).	 Shifting	 from	 a	 fertilization-	dominated	 to	 a	 warming-	
dominated period. Nature Ecology & Evolution, 1(10),	 1438–1445.	
https://	doi.	org/	10.	1038/	s4155	9-		017-		0274-		8

Peters,	W.,	van	der	Velde,	I.	R.,	van	Schaik,	E.,	Miller,	J.	B.,	Ciais,	P.,	Duarte,	
H.	F.,	van	der	Laan-	Luijkx,	I.	T.,	van	der	Molen,	M.	K.,	Scholze,	M.,	
Schaefer,	K.,	Vidale,	P.	L.,	Verhoef,	A.,	Wårlind,	D.,	Zhu,	D.,	Tans,	
P.	P.,	Vaughn,	B.,	&	White,	J.	W.	C.	(2018).	Increased	water-	use	ef-
ficiency and reduced CO2 uptake by plants during droughts at a 
continental scale. Nature Geoscience, 11(10),	744–748.	https:// doi. 
org/	10.	1038/	s4156	1-		018-		0212-		7

Peterson,	T.	J.,	Saft,	M.,	Peel,	M.	C.,	&	John,	A.	(2021).	Watersheds	may	
not recover from drought. Science, 372(6543),	745–749.	https:// doi. 
org/	10.	1126/	scien	ce.	abd5085

Piao,	S.,	Wang,	X.,	Park,	T.,	Chen,	C.,	Lian,	X.,	He,	Y.,	Bjerke,	J.	W.,	Chen,	
A.,	Ciais,	P.,	Tømmervik,	H.,	Nemani,	R.	R.,	&	Myneni,	R.	B.	(2020).	
Characteristics, drivers and feedbacks of global greening. Nature 
Reviews Earth and Environment, 1(1),	 14–27.	 https:// doi. org/ 10. 
1038/	s4301	7-		019-		0001-		x

Piao,	S.,	Wang,	X.,	Wang,	K.,	Li,	X.,	Bastos,	A.,	Canadell,	J.	G.,	Ciais,	P.,	
Friedlingstein,	P.,	&	Sitch,	S.	(2020).	Interannual	variation	of	terres-
trial carbon cycle: Issues and perspectives. Global Change Biology, 
26(1),	300–318.	https://	doi.	org/	10.	1111/	GCB.	14884	

Post,	A.	K.,	&	Knapp,	A.	K.	(2019).	Plant	growth	and	aboveground	pro-
duction	 respond	differently	 to	 late-	season	deluges	 in	 a	 semi-	arid	
grassland. Oecologia, 191,	 673–683.	 https:// doi. org/ 10. 1007/ 
s0044	2-		019-		04515	-		9

Potkay,	A.,	&	Feng,	X.	(2023).	Dynamically	optimizing	stomatal	conduc-
tance	 for	 maximum	 turgor-	driven	 growth	 over	 diel	 and	 seasonal	
cycles. AoB Plants, 15(5),	1–16.	https://	doi.	org/	10.	1093/	AOBPLA/	
PLAD044

Reichstein,	M.,	Stoy,	P.	C.,	Desai,	A.	R.,	Lasslop,	G.,	&	Richardson,	A.	D.	
(2012).	Partitioning	of	net	fluxes.	In	Eddy covariance	(pp.	263–289).	
https://	doi.	org/	10.	1007/	978-		94-		007-		2351-		1_	9

Reynolds,	 J.	 F.,	 &	 Chen,	 J.	 (1996).	Modelling	whole-	plant	 allocation	 in	
relation to carbon and nitrogen supply: Coordination versus opti-
mization:	Opinion.	Plant and Soil, 185(1),	65–74.	https:// doi. org/ 10. 
1007/	BF022	57565	

Richardson,	A.	D.,	Keenan,	T.	F.,	Migliavacca,	M.,	Ryu,	Y.,	Sonnentag,	O.,	
&	Toomey,	M.	(2013).	Climate	change,	phenology,	and	phenological	
control of vegetation feedbacks to the climate system. Agricultural 
and Forest Meteorology, 169,	 156–173.	 https://	doi.	org/	10.	1016/J.	
AGRFO	RMET.	2012.	09.	012

Rigden,	A.	J.,	&	Salvucci,	G.	D.	(2015).	Evapotranspiration	based	on	equil-
ibrated	relative	humidity	(ETRHEQ):	Evaluation	over	the	continen-
tal	 U.S.	Water Resources Research, 51(4),	 2951–2973.	 https:// doi. 
org/	10.	1002/	2014W	R016072

Rigden,	A.	J.,	&	Salvucci,	G.	D.	(2017).	Stomatal	response	to	humidity	and	
CO2	implicated	in	recent	decline	in	US	evaporation.	Global Change 
Biology, 23(3),	1140–1151.	https:// doi. org/ 10. 1111/ gcb. 13439 

Ruehr,	N.	K.,	Martin,	 J.	G.,	&	Law,	B.	E.	 (2012).	Effects	of	water	avail-
ability on carbon and water exchange in a young ponderosa pine 
forest:	Above-		and	belowground	responses.	Agricultural and Forest 
Meteorology, 164,	 136–148.	 https://	doi.	org/	10.	1016/J.	AGRFO	
RMET.	2012.	05.	015

Running,	S.,	Mu,	Q.,	&	Zhao,	M.	 (2015).	MOD17A2H MODIS/Terra gross 
primary productivity 8- day L4 global 500m SIN grid V006.	 NASA	
EOSDIS	 Land	 Processes	DAAC.	 https://	doi.	org/	10.	5067/	MODIS/		
MOD17	A2H.	006

Sage,	R.	F.	(2020).	Global	change	biology:	A	primer.	Global Change Biology, 
26(1),	3–30.	https://	doi.	org/	10.	1111/	GCB.	14893	

Salvucci,	 G.	 D.,	 &	 Gentine,	 P.	 (2013).	 Emergent	 relation	 between	 sur-
face vapor conductance and relative humidity profiles yields 

evaporation rates from weather data. Proceedings of the National 
Academy of Sciences of the United States of America, 110(16),	6287–
6291. https://	doi.	org/	10.	1073/	pnas.	12158	44110	

Schwalm,	C.	R.,	Anderegg,	W.	R.	L.,	Michalak,	A.	M.,	Fisher,	J.	B.,	Biondi,	
F.,	Koch,	G.,	Litvak,	M.,	Ogle,	K.,	Shaw,	J.	D.,	Wolf,	A.,	Huntzinger,	
D.	N.,	 Schaefer,	K.,	Cook,	R.,	Wei,	Y.,	 Fang,	Y.,	Hayes,	D.,	Huang,	
M.,	 Jain,	A.,	&	Tian,	H.	 (2017).	Global	patterns	of	drought	 recov-
ery. Nature, 548(7666),	 202–205.	 https://	doi.	org/	10.	1038/	natur	
e23021

Schymanski,	S.	J.,	Roderick,	M.	L.,	&	Sivapalan,	M.	(2015).	Using	an	op-
timality	model	to	understand	medium	and	long-	term	responses	of	
vegetation water use to elevated atmospheric CO2 concentrations. 
AoB Plants, 7(1),	1–17.	https:// doi. org/ 10. 1093/ aobpla/ plv060

Scott,	R.	L.,	Biederman,	J.	A.,	Hamerlynck,	E.	P.,	&	Barron-	Gafford,	G.	A.	
(2015).	The	carbon	balance	pivot	point	of	southwestern	U.S.	semi-
arid ecosystems: Insights from the 21st century drought. Journal of 
Geophysical Research: Biogeosciences, 120(12),	2612–2624.	https:// 
doi.	org/	10.	1002/	2015J	G003181

Seager,	R.,	Feldman,	J.,	Lis,	N.,	Ting,	M.,	Williams,	A.	P.,	Nakamura,	J.,	Liu,	
H.,	&	Henderson,	N.	(2018).	Whither	the	100th	Meridian?	The	Once	
and	 Future	 Physical	 and	 Human	 Geography	 of	 America's	 Arid–
Humid	Divide.	Part	II:	The	Meridian	Moves	East.	Earth Interactions, 
22(5),	1–24.	https://	doi.	org/	10.	1175/	EI-		D-		17-		0012.	1

Seager,	R.,	Lis,	N.,	Feldman,	J.,	Ting,	M.,	Park	Williams,	A.,	Nakamura,	J.,	
Liu,	H.,	&	Henderson,	N.	(2018).	Whither	the	100th	Meridian?	The	
once	and	future	physical	and	human	geography	of	America's	arid–
humid divide. Part I: the story so far. Earth Interactions, 22(5),	1–22.	
https://	doi.	org/	10.	1175/	EI-		D-		17-		0011.	1

Seneviratne,	S.	I.,	Corti,	T.,	Davin,	E.	L.,	Hirschi,	M.,	Jaeger,	E.	B.,	Lehner,	
I.,	Orlowsky,	B.,	&	Teuling,	A.	J.	(2010).	Investigating	soil	moisture–
climate	interactions	in	a	changing	climate:	A	review.	Earth- Science 
Reviews, 99(3),	125–161.	https:// doi. org/ 10. 1016/j. earsc irev. 2010. 
02. 004

Shekhar,	A.,	Hörtnagl,	L.,	Buchmann,	N.,	&	Gharun,	M.	(2023).	Long-	term	
changes in forest response to extreme atmospheric dryness. Global 
Change Biology, 29(18),	5379–5396.	https:// doi. org/ 10. 1111/ GCB. 
16846	

Shevliakova,	E.,	Malyshev,	S.,	Martinez-	Cano,	I.,	Milly,	P.	C.	D.,	Pacala,	S.	
W.,	Ginoux,	P.,	Dunne,	K.	A.,	Dunne,	J.	P.,	Dupuis,	C.,	Findell,	K.	L.,	
Ghannam,	K.,	Horowitz,	L.	W.,	Knutson,	T.	R.,	Krasting,	J.	P.,	Naik,	
V.,	Phillipps,	P.,	Zadeh,	N.,	Yu,	Y.,	Zeng,	F.,	&	Zeng,	Y.	 (2024).	The	
land	component	LM4.1	of	the	GFDL	earth	system	model	ESM4.1:	
Model description and characteristics of land surface climate and 
carbon cycling in the historical simulation. Journal of Advances in 
Modeling Earth Systems, 16(5),	 e2023MS003922.	 https:// doi. org/ 
10.	1029/	2023M	S003922

Short	Gianotti,	D.	J.	(2024).	Processed data for Short Gianotti et al., “two 
sub- annual time- scales and coupling modes for terrestrial water and 
carbon cycles” (2024), Global Change Biology [data set]. Zenodo. 
https://	doi.	org/	10.	5281/	zenodo.	13144427

Short	Gianotti,	D.	J.,	&	Entekhabi,	D.	(2024).	Local	and	general	patterns	
of	 terrestrial	water-	carbon	coupling.	Geophysical Research Letters, 
51,	1–12.	https://	doi.	org/	10.	1029/	2024G	L109625

Short	Gianotti,	D.	J.,	Rigden,	A.	J.,	Salvucci,	G.	D.,	&	Entekhabi,	D.	(2019).	
Satellite	and	station	observations	demonstrate	water	Availability's	
effect	 on	 continental-	scale	 evaporative	 and	 photosynthetic	 land	
surface dynamics. Water Resources Research, 55(1),	 540–554.	
https://	doi.	org/	10.	1029/	2018W	R023726

Smith,	A.,	Lott,	N.,	&	Vose,	R.	 (2011).	The	integrated	surface	database:	
Recent developments and partnerships. Bulletin of the American 
Meteorological Society, 92(6),	 704–708.	 https://	doi.	org/	10.	1175/	
2011B	AMS30	15.	1

Smith,	 N.	 G.,	 Keenan,	 T.	 F.,	 Colin	 Prentice,	 I.,	Wang,	 H.,	Wright,	 I.	 J.,	
Niinemets,	 Ü.,	 Crous,	 K.	 Y.,	 Domingues,	 T.	 F.,	 Guerrieri,	 R.,	 Yoko	
Ishida,	F.,	Kattge,	J.,	Kruger,	E.	L.,	Maire,	V.,	Rogers,	A.,	Serbin,	S.	P.,	
Tarvainen,	L.,	Togashi,	H.	F.,	Townsend,	P.	A.,	Wang,	M.,	…	Zhou,	S.	

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17463, W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41559-017-0274-8
https://doi.org/10.1038/s41561-018-0212-7
https://doi.org/10.1038/s41561-018-0212-7
https://doi.org/10.1126/science.abd5085
https://doi.org/10.1126/science.abd5085
https://doi.org/10.1038/s43017-019-0001-x
https://doi.org/10.1038/s43017-019-0001-x
https://doi.org/10.1111/GCB.14884
https://doi.org/10.1007/s00442-019-04515-9
https://doi.org/10.1007/s00442-019-04515-9
https://doi.org/10.1093/AOBPLA/PLAD044
https://doi.org/10.1093/AOBPLA/PLAD044
https://doi.org/10.1007/978-94-007-2351-1_9
https://doi.org/10.1007/BF02257565
https://doi.org/10.1007/BF02257565
https://doi.org/10.1016/J.AGRFORMET.2012.09.012
https://doi.org/10.1016/J.AGRFORMET.2012.09.012
https://doi.org/10.1002/2014WR016072
https://doi.org/10.1002/2014WR016072
https://doi.org/10.1111/gcb.13439
https://doi.org/10.1016/J.AGRFORMET.2012.05.015
https://doi.org/10.1016/J.AGRFORMET.2012.05.015
https://doi.org/10.5067/MODIS/MOD17A2H.006
https://doi.org/10.5067/MODIS/MOD17A2H.006
https://doi.org/10.1111/GCB.14893
https://doi.org/10.1073/pnas.1215844110
https://doi.org/10.1038/nature23021
https://doi.org/10.1038/nature23021
https://doi.org/10.1093/aobpla/plv060
https://doi.org/10.1002/2015JG003181
https://doi.org/10.1002/2015JG003181
https://doi.org/10.1175/EI-D-17-0012.1
https://doi.org/10.1175/EI-D-17-0011.1
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1111/GCB.16846
https://doi.org/10.1111/GCB.16846
https://doi.org/10.1029/2023MS003922
https://doi.org/10.1029/2023MS003922
https://doi.org/10.5281/zenodo.13144427
https://doi.org/10.1029/2024GL109625
https://doi.org/10.1029/2018WR023726
https://doi.org/10.1175/2011BAMS3015.1
https://doi.org/10.1175/2011BAMS3015.1


18 of 18  |     SHORT GIANOTTI et al.

X.	(2019).	Global	photosynthetic	capacity	is	optimized	to	the	envi-
ronment. Ecology Letters, 22(3),	506–517.	https:// doi. org/ 10. 1111/ 
ele. 13210 

Song,	 L.,	 Griffin-	Nolan,	 R.	 J.,	 Muraina,	 T.	 O.,	 Chen,	 J.,	 Te,	 N.,	 Shi,	 Y.,	
Whitney,	K.	D.,	Zhang,	B.,	Yu,	Q.,	Smith,	M.	D.,	Zuo,	X.,	Wang,	Z.,	
Knapp,	A.	K.,	Han,	X.,	 Collins,	 S.	 L.,	&	 Luo,	W.	 (2023).	Grassland	
sensitivity to drought is related to functional composition across 
East	Asia	 and	North	America.	Ecology, e4220. https:// doi. org/ 10. 
1002/ ECY. 4220

Stoy,	P.	C.,	El-	Madany,	T.	S.,	Fisher,	J.	B.,	Gentine,	P.,	Gerken,	T.,	Good,	S.	
P.,	Klosterhalfen,	A.,	Liu,	S.,	Miralles,	D.	G.,	Perez-	Priego,	O.,	Rigden,	
A.	 J.,	 Skaggs,	 T.	 H.,	 Wohlfahrt,	 G.,	 Anderson,	 R.	 G.,	 Coenders-	
Gerrits,	A.	M.	J.,	Jung,	M.,	Maes,	W.	H.,	Mammarella,	I.,	Mauder,	M.,	
…	Wolf,	S.	 (2019).	Reviews	and	syntheses:	Turning	the	challenges	
of partitioning ecosystem evaporation and transpiration into op-
portunities. Biogeosciences, 16(19),	3747–3775.	https:// doi. org/ 10. 
5194/	BG-		16-		3747-		2019

Tei,	 S.,	 Sugimoto,	A.,	Yonenobu,	H.,	Matsuura,	Y.,	Osawa,	A.,	 Sato,	H.,	
Fujinuma,	J.,	&	Maximov,	T.	(2017).	Tree-	ring	analysis	and	modeling	
approaches yield contrary response of circumboreal forest produc-
tivity to climate change. Global Change Biology, 23(12),	5179–5188.	
https://	doi.	org/	10.	1111/	GCB.	13780	

Tramontana,	 G.,	 Jung,	 M.,	 Schwalm,	 C.	 R.,	 Ichii,	 K.,	 Camps-	Valls,	 G.,	
Ráduly,	 B.,	 Reichstein,	 M.,	 Arain,	 M.	 A.,	 Cescatti,	 A.,	 Kiely,	 G.,	
Merbold,	 L.,	 Serrano-	Ortiz,	 P.,	 Sickert,	 S.,	Wolf,	 S.,	 &	 Papale,	 D.	
(2016).	Predicting	carbon	dioxide	and	energy	fluxes	across	global	
FLUXNET	 sites	 with	 regression	 algorithms.	 Biogeosciences, 13, 
4291–4313.	https://	doi.	org/	10.	5194/	bg-		13-		4291-		2016

Trugman,	A.	T.,	Medvigy,	D.,	Mankin,	J.	S.,	&	Anderegg,	W.	R.	L.	(2018).	
Soil	moisture	stress	as	a	major	driver	of	carbon	cycle	uncertainty.	
Geophysical Research Letters, 45(13),	 6495–6503.	 https:// doi. org/ 
10.	1029/	2018g	l078131

Ukkola,	A.	M.,	Prentice,	 I.	C.,	Keenan,	T.	F.,	Van	Dijk,	A.	 I.	J.	M.,	Viney,	
N.	R.,	Myneni,	R.	B.,	&	Bi,	J.	(2016).	Reduced	streamflow	in	water-	
stressed climates consistent with CO2 effects on vegetation. Nature 
Climate Change, 6(1),	75–78.	https://	doi.	org/	10.	1038/	nclim	ate2831

Walker,	A.	P.,	De	Kauwe,	M.	G.,	Bastos,	A.,	Belmecheri,	S.,	Georgiou,	K.,	
Keeling,	R.	F.,	McMahon,	S.	M.,	Medlyn,	B.	E.,	Moore,	D.	J.	P.,	Norby,	
R.	 J.,	Zaehle,	S.,	Anderson-	Teixeira,	K.	 J.,	Battipaglia,	G.,	Brienen,	
R.	J.	W.,	Cabugao,	K.	G.,	Cailleret,	M.,	Campbell,	E.,	Canadell,	J.	G.,	
Ciais,	 P.,	 …	 Zuidema,	 P.	 A.	 (2020).	 Integrating	 the	 evidence	 for	 a	
terrestrial carbon sink caused by increasing atmospheric CO2. New 
Phytologist, 229(5),	2413.	https://	doi.	org/	10.	1111/	nph.	16866	

Yang,	 Y.,	 Roderick,	M.	 L.,	 Zhang,	 S.,	 McVicar,	 T.	 R.,	 &	 Donohue,	 R.	 J.	
(2019).	Hydrologic	implications	of	vegetation	response	to	elevated	
CO2 in climate projections. Nature Climate Change, 9(1),	 44–48.	
https://	doi.	org/	10.	1038/	s4155	8-		018-		0361-		0

Zhang,	Y.,	Xiao,	X.,	Jin,	C.,	Dong,	J.,	Zhou,	S.,	Wagle,	P.,	Joiner,	J.,	Guanter,	
L.,	 Zhang,	 Y.,	 Zhang,	 G.,	 Qin,	 Y.,	 Wang,	 J.,	 &	 Moore,	 B.	 (2016).	
Consistency	 between	 sun-	induced	 chlorophyll	 fluorescence	 and	
gross	primary	production	of	vegetation	in	North	America.	Remote 
Sensing of Environment, 183,	 154–169.	 https:// doi. org/ 10. 1016/j. 
rse.	2016.	05.	015

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Short	Gianotti,	D.	J.,	McColl,	K.	A.,	
Feldman,	A.	F.,	Xu,	X.,	&	Entekhabi,	D.	(2024).	Two	sub-	annual	
timescales and coupling modes for terrestrial water and 
carbon cycles. Global Change Biology, 30, e17463. https://doi.
org/10.1111/gcb.17463

 13652486, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17463, W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/ele.13210
https://doi.org/10.1111/ele.13210
https://doi.org/10.1002/ECY.4220
https://doi.org/10.1002/ECY.4220
https://doi.org/10.5194/BG-16-3747-2019
https://doi.org/10.5194/BG-16-3747-2019
https://doi.org/10.1111/GCB.13780
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.1029/2018gl078131
https://doi.org/10.1029/2018gl078131
https://doi.org/10.1038/nclimate2831
https://doi.org/10.1111/nph.16866
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1016/j.rse.2016.05.015
https://doi.org/10.1016/j.rse.2016.05.015
https://doi.org/10.1111/gcb.17463
https://doi.org/10.1111/gcb.17463

	Two sub-annual timescales and coupling modes for terrestrial water and carbon cycles
	Abstract
	1|INTRODUCTION
	1.1|Motivation

	2|METHODS
	2.1|Spatial and temporal focus
	2.2|Gridding the Drydowns in the GPP-EF space
	2.3|Joint density contours
	2.4|MODIS GPP
	2.5|GOME-2 SIF
	2.6|Flux towers
	2.7|FluxCom
	2.8|ETRHEQ turbulent fluxes
	2.9|CMIP6 data
	2.10|Data limitations
	2.11|Interstorm Drydowns
	2.12|Linear dynamical system model

	3|RESULTS
	3.1|How do sub-seasonal dynamics drive the mean state?
	3.2|Fitting to FluxCom data
	3.3|Local slow temporal dynamics are tangent to the geographic distribution
	3.4|Earth system model performance

	4|DISCUSSION
	4.1|Across-sites time-mean, local slow dynamics, and space-for-time substitutions
	4.2|Observational benchmark for earth system model emergent behaviors
	4.3|Water limitation definition
	4.4|Stomatal feedbacks muted at daily-averaged scale
	4.5|Plant functions and traits
	4.6|Additional considerations

	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


